Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i) = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. −7.
C. 3.
D. −3.
2017
4 + 2i + i
Câu 2. Số phức z =
có tổng phần thực và phần ảo là
2−i
A. -1.
B. 1.
C. 2.
D. 3.
2
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 2ki.
C. A = 0.
D. A = 1.
z2
Câu 4. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 13.
B. 5.
C. 11.
D. 5.
Câu 5.√Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là √
A. 2 30.
B. 3 10.
C. 10 3.
D. 130.
Câu 6. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = 7 − 3i.
C. w = −7 − 7i.
D. w = 3 + 7i.
Câu 7. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 38 .
B. 4.
C. 6.
D. 8.
Câu 8. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (1; 2; 3).
B. (−2; −4; −6).
C. (−1; −2; −3).
D. (2; 4; 6).
Câu 9. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).
B. (2; 3).
C. (3; +∞).
D. (−∞; 3).
Câu 10. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng
A. 14.
B. 28.
√
C. 11 + 4 6.
√
D. 18 + 4 6.
Câu 11. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; +∞).
C. (1; 2).
D. (−∞; 1).
Câu 12. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
A. 41 .
B. 72 .
C. 21 .
D. 3.
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −8.
C. −12.
D. 8.
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 ≤ m < .
C. m < 0 hoặc m > . D. 0 < m < .
4
4
4
2
Câu 15. Cho phương trình bậc hai az + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
A. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Trang 1/5 Mã đề 001
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
D. Phương trình đã cho ln có nghiệm.
Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√
√
√ z + 2z bằng bao nhiêu?
B. |w| = 5.
C. |w| = 37.
D. |w| = 5 13.
A. |w| = 13.
Câu 17. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 − i.
B. z = −3 + i.
C. z = 3 + i.
D. z = 3 − i.
Câu 18. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. không tồn tại.
C. 4i.
D. 2i hoặc -2i.
Câu 19. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. 5π.
D. .
4
2
−2 − 3i
Câu 20. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1