Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −9.
B. 10.
C. 9.
D. −10.
Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 10i.
C. 11 + 2i.
Câu 3.
A. 5.
Câu 4.
A. 5.
D. −3 − 2i.
z
2
Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z
1
√
√
B. 13.
C. 11.
D. 5.
2(1 + 2i)
Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
B. 3.
C. 4.
D. 13.
Câu 5. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. −7.
C. 3.
D. −3.
Câu 6. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 + 1.
B. −22016 .
C. −21008 .
D. 21008 .
Câu 7. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.
B. y = x2 − 4x + 1.
C. y = x3 − 3x − 5.
D. y = x4 − 3x2 + 2.
A. y = x−3
x−1
Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 3.
B. 15.
C. 17.
D. 7.
Câu 9. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
B. 12 .
C. 34 .
D. 52 .
A. 41 .
Câu 10. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 23 .
B. ln 6a2 .
C. ln a.
D. ln 23 .
Câu 11. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. P(1; 2; 3).
B. N(2; 1; 2).
C. M(2; −1; −2).
D. Q(1; 2; −3).
Câu 12. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (4; 5).
B. (6; 7).
C. (3; 4).
D. (2; 3).
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√ Khi đó, mơ-đun của√số phức w = m − 3m + i bằng bao nhiêu ?
√
A. |w| = 3 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 5.
Câu 14. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
A. .
B. − .
C. − .
D. .
4
4
4
4
4
3
2
Câu 15. Tổng nghịch đảo các nghiệm của phương trình z −z −2z +6z−4 = 0 trên tập số phức bằng
1
1
3
3
B. − .
C. − .
D. .
A. .
2
2
2
2
Trang 1/5 Mã đề 001
Câu 16. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
A. P = 5.
B. P = 13.
C. P = 5.
D. P = 2 5.
Câu 17. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. 2.
C. 5.
D. −4.
Câu 18. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√
√
A. |w| = 37.
B. |w| = 5 13.
C. |w| = 13.
D. |w| = 5.
Câu 19. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 20.
D. r = 22.
Câu 20. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B. 25π.
C. .
D. .
2
4
Câu 21. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Một đường thẳng.
C. Parabol.
D. Hai đường thẳng.
Câu 22. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 4 và 3.
C. 5 và 3.
D. 10 và 4.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác nhọn.
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 3π.
D. 2π.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ w = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức
B. w = 1 +
A. w = 27√− i hoặcw = 27 +√i.
√ 27 hoặcw = 1 −√ 27.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = − 27 − i hoặcw = − 27 + i.
√
Câu 26. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 6.
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
A. w = 1 + √27i hoặcw = 1 − √ 27i.
B. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = 27 − i hoặcw = 27 + i.
Câu 28. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 4.
C. r = 5.
D. r = 20.
Câu 29. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
A. P = 3.
B. P =
.
C. P = 2.
D. P =
.
2
2
Trang 2/5 Mã đề 001
Câu 30. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. x = 2.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 31. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. π.
C. 2π.
D. 4π.
√
Câu 32. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 50.
C. |z| = 33.
D. |z| = 5 2.
A. |z| = 10.
√
Câu 33. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
3
1
3
1
B. |z| < .
C. ≤ |z| ≤ 2.
D. |z| > 2.
A. < |z| < .
2
2
2
2
Câu 34. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
Câu 35. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −22016 .
B. −21008 .
C. 22016 .
D. 21008 .
1
Câu 36. Cho số phức z thỏa mãn
z +
= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z
√
√
A. 3.
B. 5.
C. 5.
D. 13.
1 + z + z2
Câu 37. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
7
5
1
3
3
5
B. 2 < |z| < .
C. < |z| < .
D. < |z| < 2.
A. < |z| < .
2
2
2
2
2
2
2
Câu 38. Cho số phức z thỏa mãn |z − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3
1
D. |w|min = .
A. |w|min = 2.
B. |w|min = 1.
C. |w|min = .
2
2
x+1
Câu 39. Cho hàm số y =
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
điểm của (C) và d.
A. 1.
B. 0.
C. 2.
D. 3.
Câu 40. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Điểm cực tiểu của hàm số là (0; 1).
B. Đồ thị hàm số khơng có tiệm cận.
C. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
D. Đồ thị hàm số có một điểm cực đại.
Câu 41. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
−∞
2x + 3
2x − 3
2x + 1
.
B. y =
.
C. y =
.
x−1
x−1
x−1
Câu 42. Hình đa diện dưới đây có bao nhiêu cạnh?
A. y =
D. y =
2x − 1
.
x+1
Trang 3/5 Mã đề 001
A. 21.
B. 18.
C. 12.
D. 15.
Câu 43. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Câu 44. Cho hàm số y = f (x) có bảng biến thiên như sau:
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−∞
−2
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 2.
C. 4.
D. 1.
Câu 45. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x2 − 4x + 1.
B. y = x4 − 3x2 + 2.
C. y = x−3
.
D. y = x3 − 3x − 5.
x−1
Câu 46. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (6; 7).
C. (−6; 7).
D. (7; 6).
Câu 47. Phần ảo của số phức z = 2 − 3i là
A. −3.
B. 2.
C. −2.
D. 3.
Câu 48. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 4.
B. 6.
C. 2.
D. 12.
Câu 49. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
B. 3.
C. 5.
D. 2.
Câu 50. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 41 .
B. 12 .
C. 34 .
D. 52 .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001