Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4 − 2i (1 − i)(2 + i)
+
là
Câu 1. Phần thực của số phức z =
2−i
2 + 3i
29
11
29
11
B.
.
C. .
D. − .
A. − .
13
13
13
13
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 2. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. z = z.
C. z là số thuần ảo.
D. |z| = 4.
B. z = .
z
4(−3 + i) (3 − i)2
Câu 3. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√
√1 − 2i
√
√
A. |w| = 85.
B. |w| = 4 5.
C. |w| = 48.
D. |w| = 6 3.
Câu 4. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. Q(−2; −3).
B. P(−2; 3).
C. M(2; −3).
D. N(2; 3).
Câu 5. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số phức.
B. Mô-đun của số phức z là số thực.
D. Mô-đun của số phức z là số thực không âm.
√
Câu 6. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. 0 ≤ m ≤ 1.
B. m ≥ 0 hoặc m ≤ −1. C. m ≥ 1 hoặc m ≤ 0. D. −1 ≤ m ≤ 0.
Câu R7. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
x2
B. f (x)dx = sin x + x2 + C.
A. f (x)dx = − sin x + 2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 8. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 62 a3 .
B. 2a3 .
C. 22 a3 .
D. 42 a3 ..
Câu 9. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (12; +∞).
C. (2; 3).
D. (−∞; 3).
Câu 10. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n2 = (1; −1; 1).
D. →
n1 = (−1; 1; 1).
Câu 11. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (2; 0).
C. (0; −2).
D. (0; 2).
Câu 12. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = x ln1 3 .
B. y′ = lnx3 .
C. y′ = 1x .
D. y′ = − x ln1 3 .
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mô-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 2.
C. |w| = 2 2.
D. |w| = 5.
A. |w| = 3.
Câu 14. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −4.
B. −1.
C. 2.
D. 5.
Trang 1/5 Mã đề 001
Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 + i.
C. z = 3 + i.
D. z = −3 − i.
Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 13.
B. |w| = 5.
C. |w| = 5 13.
D. |w| = 37.
Câu 17. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
1
3
B. .
C. − .
D. .
A. − .
2
2
2
2
2
Câu 18. Biết z = 1 − 3i là một nghiệm của phương trình z + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 8.
B. 12.
C. −12.
D. −8.
1+i
z
Câu 19. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
√
Câu 20. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 33.
C. |z| = 50.
D. |z| = 5 2.
√
Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
3
1
1
B. ≤ |z| ≤ 2.
C. |z| > 2.
D. |z| < .
A. < |z| < .
2
2
2
2
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
B.
.
C. 25π.
D. 5π.
A. .
2
4
z+i+1
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một đường tròn.
C. Một Elip.
D. Một Parabol.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1√+ 27 hoặcw = √
1 − 27.
B. w = 1 +
√ 27i hoặcw = 1 −√ 27i.
C. w = 27 − i hoặcw = 27 + i.
D. w = − 27 − i hoặcw = − 27 + i.
Câu 25. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 3 2.
C. max T = 2 5.
D. max T = 3 5.
A. max T = 2 10.
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó√ độ dài của MN là
A. MN = 2 5.
B. MN = 5.
C. MN = 5.
D. MN = 4.
Câu 27. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2
1
1
4
A. √ .
B. √ .
C. .
D. √ .
2
13
5
2
Câu 28. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 5.
C. max T = 3 2.
D. max T = 2 10.
Trang 2/5 Mã đề 001
Câu 29. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 20.
C. r = 4.
D. r = 22.
z+i+1
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một đường thẳng.
D. Một Parabol.
√
Câu 31. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 5 2.
C. |z| = 33.
D. |z| = 10.
Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. −1.
C. 1.
D. 0.
√
2
. Giá trị lớn nhất của biểu thức
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
2
P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng
√ bao nhiêu?
√
√
7 2
4 5
10 2
3 6
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
3
5
3
2
Câu 34. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 22016 .
B. −21008 .
C. −22016 .
D. 21008 .
Câu 35. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P =
.
C. P = 2.
D. P = 3.
A. P =
2
2
Câu 36. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất√của biểu thức P = |z1 | + |z2 |. √
√
√
B. P = 5 + 3 5.
C. P = 34 + 3 2.
D. P = 2 26.
A. P = 4 6.
√
2 2
Câu 37. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
√
2
2
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
3
√
8
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3
Câu 38. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
B. 2.
C. 1.
D. .
A. .
2
2
4
2
Câu 39. Xét hàm số f (x) = −x + 2x + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
B. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
C. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
D. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
Câu 40. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Hàm số có hai điểm cực trị.
B. Giá trị cực đại của hàm số là 0.
C. Giá trị cực tiểu của hàm số là 3.
D. Hàm số có một điểm cực đại và một điểm cực tiểu.
Câu 41. Hình đa diện dưới đây có bao nhiêu cạnh?
Trang 3/5 Mã đề 001
A. 21.
B. 12.
C. 18.
D. 15.
Câu 42. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Hình 1
A. 3.
B. 0.
Hình 3
Hình 2
C. 1.
D. 2.
Câu 43. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
C. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
D. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
Câu 44. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 3.
B. 1.
C. 2.
D. 0.
Câu 45. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
B. 3.
C. 6.
D. 43 .
A. 32 .
Câu 46. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
16
.
B. 16
.
C. 15
.
D. 16π
.
A. 16π
15
9
9
Câu 47. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 49.
B. 48.
C. 89.
D. 90.
Câu 48. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt
phẳng (S CD) bằng √
√
√
√
2 3
A. 3 a.
B. 33 a.
C. 2a.
D. 22 a.
Câu 49. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. N(2; 1; 2).
B. Q(1; 2; −3).
C. M(2; −1; −2).
D. P(1; 2; 3).
2
−16
Câu 50. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 193.
B. 184.
C. 92.
x2 −16
?
27
D. 186.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001