Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (781)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.25 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)

Mã đề thi 001

Câu 1. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 0 hoặc m ≤ −1. B. 0 ≤ m ≤ 1.
C. m ≥ 1 hoặc m ≤ 0. D. −1 ≤ m ≤ 0.
Câu 2. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là −3 và phần ảo là−2.
B. Phần thực là−3 và phần ảo là −2i.
C. Phần thực là3 và phần ảo là 2.
D. Phần thực là 3 và phần ảo là 2i.
Câu 3. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 4.
D. 3.
25
1
1
Câu 4. Cho số phức z thỏa
=


+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 17.
B. −17.
C. −31.
D. 31.
Câu 5. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −3.
B. 7.
C. 3.
D. −7.
Câu 6. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z · z + z + z + 1.

C. z + z + 1.

D. |z|2 + 2|z| + 1.

Câu 7. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = x ln1 3 .
B. y′ = − x ln1 3 .
C. y′ = 1x .

D. y′ =

Câu 8. Phần ảo của số phức z = 2 − 3i là

A. −3.
B. 3.

D. −2.

Câu 9. Tiệm cận ngang của đồ thị hàm số y =
A. y = 23 .
B. y = − 31 .

C. 2.
2x+1
3x−1

ln 3
.
x

là đường thẳng có phương trình:
C. y = − 23 .
D. y = 13 .

Câu 10. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 62 a3 .
B. 22 a3 .
C. 42 a3 ..

D. 2a3 .
Câu 11. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (2; +∞).
C. (1; +∞).
D. (−∞; 1).
Câu 12. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 90◦ .
B. 45◦ .
C. 30◦ .
D. 60◦ .
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
B. Phương trình đã cho ln có nghiệm.
−b
C. Phương trình đã cho có tổng hai nghiệm bằng
.
a
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Trang 1/5 Mã đề 001


Câu 14. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 2.
B. 5.

C. −1.
D. −4.
Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 + i.
C. z = −3 − i.

D. z = 3 + i.

Câu 16. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -1.
C. 2.
D. -3.
Câu 17. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
B. .
C. − .
D. .
A. − .
2
2
2
2
2
Câu 18. Biết z là số phức thỏa mãn z + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao

nhiêu ?.




B. |w| = 3.
C. |w| = 2.
D. |w| = 5.
A. |w| = 2 2.
Câu 19. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. x = 2.
2
2
C. (x + 1) + (y − 2) = 125.
D. (x − 5)2 + (y − 4)2 = 125.
z+i+1
là số thuần ảo?
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường thẳng.
B. Một đường tròn.
C. Một Elip.
D. Một Parabol.

Câu 21. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 3.

D. max |z| = 4.
Câu 22. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 5 = 0.
C. x − y + 4 = 0.
D. x + y − 8 = 0.
Câu 23. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



B. max T = 3 2.
C. max T = 3 5.
D. max T = 2 10.
A. max T = 2 5.

Câu 24. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3
1
C. ≤ |z| ≤ 2.
D. |z| < .
A. |z| > 2.
B. < |z| < .
2
2

2
2
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. 5π.
B.
.
C. 25π.
D. .
4
2






−2 − 3i




Câu 26. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

z + 1


= 1.

3 − 2i

C. max |z| = 3.
D. max |z| = 2.
A. max |z| = 1.
B. max |z| = 2.
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 3π.
C. π.
D. 4π.
Câu 28. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
1
2
A. √ .
B. .
C. √ .
D. √ .
2

13
2
5
Trang 2/5 Mã đề 001


Câu 29. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .
B. 5π.
C. .
D. 25π.
4
2
Câu 30. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Một đường thẳng.
C. Đường tròn.
D. Hai đường thẳng.
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ Để tam giác MNP
√ đều là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức.
27 + i.
B. w = 27√− i hoặcw = 27 +√i.
A. w = − 27
√ − i hoặcw = − √

C. w = 1 + 27 hoặcw = 1 − 27.
D. w = 1 + 27i hoặcw = 1 − 27i.





z − z





=2?
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
z
Câu 33. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?

1 + |z|2

2
1
1
.
C. .
D. .
A. 2.
B.
3
5
2
2
1
Câu 34. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2



×