Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4 − 2i (1 − i)(2 + i)
Câu 1. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
29
11
A. .
B. − .
C. .
13
13
13
D. −
11
.
13
z2
Câu 2. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 5.
B. 5.
C. 11.
D. 13.
Câu 3. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là 3 và phần ảo là 2i.
C. Phần thực là−3 và phần ảo là −2i.
D. Phần thực là −3 và phần ảo là−2.
(1 + i)(2 − i)
là
Câu 4. Mô-đun của số phức z =
√
√ 1 + 3i
A. |z| = 2.
B. |z| = 5.
C. |z| = 1.
D. |z| = 5.
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = 7 − 3i.
C. w = −7 − 7i.
D. w = 3 + 7i.
2017
(1 + i)
Câu 6. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 0.
B. 2.
C. 21008 .
D. 1.
Câu 7. Phần ảo của số phức z = 2 − 3i là
A. −2.
B. 3.
C. 2.
D. −3.
Câu 8. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n2 = (1; −1; 1).
B. →
n4 = (1; 1; −1).
C. →
n3 = (1; 1; 1).
D. →
n1 = (−1; 1; 1).
R 1
Câu 9. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = − x12 .
B. F ′ (x) = ln x.
C. F ′ (x) = 1x .
D. F ′ (x) = x22 .
Câu 10. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 85.
B. 36.
C. 4.
D. −77.
Câu 11. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
C. 43 .
D. 6.
A. 3.
B. 23 .
Câu 12. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 41 .
B. 52 .
C. 21 .
D. 43 .
Câu 13. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = 3 + i.
C. z = −3 − i.
D. z = −3 + i.
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
A. P = 5.
B. P = 2 5.
C. P = 5.
D. P = 13.
Câu 15. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Trang 1/5 Mã đề 001
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
C. Phương trình đã cho ln có nghiệm.
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −8.
C. −12.
D. 8.
Câu 17. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = .
B. T = 9.
C. T = 3.
D. T =
.
4
2
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 2.
B. 3.
C. 4.
D. 1.
√
Câu 19. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 50.
C. |z| = 33.
D. |z| = 5 2.
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√
√ mặt phẳng phức. Khi đó độ dài của MN là
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
A. MN = 5.
√
Câu 21. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 3.
C. max |z| = 6.
D. max |z| = 7.
Câu 22. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2
1
4
1
D. √ .
A. .
B. √ .
C. √ .
2
13
2
5
z−z
=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một Elip.
D. Một đường tròn.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Parabol.
C. Một đường thẳng.
D. Đường tròn.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 5π.
C. .
D. 25π.
2
4
Câu 26. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 2π.
D. 3π.
Câu 27. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Hai đường thẳng.
C. Một đường thẳng.
D. Parabol.
√
Câu 28. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 5 2.
C. |z| = 33.
D. |z| = 10.
Câu 29. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 22.
D. r = 20.
Trang 2/5 Mã đề 001
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
.
C. 25π.
D. .
A. 5π.
B.
4
2
√
Câu 31. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 6.
C. max |z| = 4.
D. max |z| = 7.
z
Câu 32. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác đều.
√
2
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bằng bao nhiêu?
√
√
√
√
10 2
4 5
7 2
3 6
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
3
5
3
2
Câu 34. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
B. 1.
C. 2.
D. .
A. .
2
2
√
√
√
2 42 √
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
Câu 35. Cho số phức z thỏa mãn 1 − 5i |z| =
z
5
1
3
A. < |z| < 4.
B. < |z| < 2.
C. < |z| < 3.
D. 3 < |z| < 5.
2
2
2
Câu 36. (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b. Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2 + az + b = 0. Tính T = |z1 | + |z2 |.
√
√
√
√
2 97
2 85
.
B. T =
.
C. T = 4 13.
A. T =
D. T = 2 13.
3
3
√
Câu 37. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
1
3
3
A. |z| > 2.
B. |z| < .
C. < |z| < .
D. ≤ |z| ≤ 2.
2
2
2
2
√
1
3
Câu 38. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a2 + b2 + c2 − ab − bc − ca.
B. a2 + b2 + c2 + ab + bc + ca.
C. 0.
D. a + b + c.
Câu 39. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.
B. (0; 3).
C. x = 0.
D. (1; 2).
Câu 40. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số có một điểm cực đại.
B. Điểm cực tiểu của hàm số là (0; 1).
C. Đồ thị hàm số khơng có tiệm cận.
D. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
Câu 41. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Hàm số có hai điểm cực trị.
B. Giá trị cực đại của hàm số là 0.
C. Giá trị cực tiểu của hàm số là 3.
D. Hàm số có một điểm cực đại và một điểm cực tiểu.
Câu 42. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Trang 3/5 Mã đề 001
Hình 1
A. 1.
Hình 3
Hình 2
B. 2.
C. 0.
D. 3.
C. 12.
D. 15.
Câu 43. Hình đa diện dưới đây có bao nhiêu cạnh?
A. 21.
B. 18.
Câu 44. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối lập phương.
B. Khối mười hai mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 45. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .
B. 60◦ .
C. 30◦ .
D. 90◦ .
i
R2
R2h
Câu 46. Nếu 0 f (x)dx = 4 thì 0 21 f (x) − 2 dx bằng
A. 8.
B. 0.
C. 6.
D. −2.
Câu 47. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.
B. 48.
Câu 48. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 32 .
B. y = − 13 .
C. 49.
D. 90.
2x+1
3x−1
là đường thẳng có phương trình:
C. y = 13 .
D. y = 23 .
Câu 49. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16π
.
C. 16
.
D. 169 .
15
9
15
Câu 50. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x−3
.
B. y = x4 − 3x2 + 2.
C. y = x3 − 3x − 5.
D. y = x2 − 4x + 1.
x−1
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001