Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4 − 2i (1 − i)(2 + i)
Câu 1. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
29
11
A. − .
B.
.
C. − .
13
13
13
D.
11
.
13
Câu 2.√Cho số phức z thỏa mãn
√ z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w = 6z − 25i là
A. 2 5.
B. 29.
C. 13.
D. 5.
Câu 3. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −22016 .
B. 21008 .
C. −21008 .
D. −21008 + 1.
Câu 4. Tính mơ-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.
√
5 34
C. |z| =
.
A. |z| = 34.
B. |z| = 34.
3
√
D. |z| =
34
.
3
Câu 5. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
1
1
25
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
B. −31.
C. 17.
D. 31.
Câu 6. Cho số phức z thỏa
A. −17.
Câu 7. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; −2; −3).
B. (1; −2; 3).
C. (1; 2; −3).
D. (−1; 2; 3).
Câu 8. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (0; −2).
B. (−2; 0).
C. (0; 2).
D. (2; 0).
Câu 9. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
khoảng
cách
từ
tâm
của
đường
tròn
đáy
đến mặt phẳng (S AB) bằng
√
√
5
A. 24 .
B. 8 2.
C. 4 2.
D. 245 .
Câu 10. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 5.
B. 6.
C. 12.
i
R2
R 2 h1
Câu 11. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. −2.
B. 0.
C. 6.
D. 11.
D. 8.
Câu R12. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 13. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. −2.
B. 1.
C. 0.
D. 2.
Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -1.
C. -3.
D. 2.
Trang 1/5 Mã đề 001
Câu 15. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
C. 0 < m < .
D. 0 ≤ m < .
A. m < 0 hoặc m > . B. m ≥ 0.
4
4
4
4
2
Câu 16. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z − z − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
B. T = 4.
C. T = 2 + 2 3.
D. T = 2 3.
A. T = 4 + 2 3.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w =√z2 + 2z bằng bao nhiêu?√
√
A. |w| = 5 13.
B. |w| = 37.
C. |w| = 5.
D. |w| = 13.
Câu 18. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. −4.
C. 2.
D. −1.
√
Câu 19. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
B. |z| > 2.
C. |z| < .
D. < |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
Câu 20. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B. 25π.
C. .
D. .
2
4
2
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó√độ dài của MN là
B. MN = 2 5.
C. MN = 5.
D. MN = 4.
A. MN = 5.
Câu 22. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 3π.
D. 4π.
z
z
−
= 2 ?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
Câu 24. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 10.
C. max T = 3 2.
D. max T = 2 5.
√
Câu 25. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 7.
C. max |z| = 6.
D. max |z| = 4.
z+i+1
là số thuần ảo?
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một Parabol.
D. Một đường thẳng.
Câu 27. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
D. .
A. 5π.
B. 25π.
C. .
4
2
z−z
=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho