Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (525)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.43 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Với mọi số phức z, ta có |z + 1| bằng
A. z2 + 2z + 1.
B. z · z + z + z + 1.
2

C. z + z + 1.

D. |z|2 + 2|z| + 1.






z2
Câu 2. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z1




A. 5.
B. 11.
C. 13.
D. 5.

Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 0.
C. A = 1.
D. A = 2k.
2
4(−3 + i) (3 − i)
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 4. Cho số phức z thỏa mãn z =
−i

√ 1 − 2i


A. |w| = 4 5.
B. |w| = 85.
C. |w| = 6 3.
D. |w| = 48.
Câu 5. Số phức z =
A. 0.

(1 + i)2017

có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 21008 .
C. 2.
D. 1.

Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 4.
C. 2.

D. 3.

Câu 7. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 6.
B. 4.
C. 83 .
D. 8.
Câu 8. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d = 0.
B. d < R.
C. d > R.
D. d = R.
Câu 9. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao nhiêu
giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?

A. 2.
B. 1.
C. 4.
D. 3.
Câu 10. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
C. 31 πr2 l.
D. 2πrl.
A. πrl.
B. 23 πrl2 .
Câu 11. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 2a3 .
B. 62 a3 .
C. 42 a3 ..
D. 22 a3 .
R
Câu 12. Cho 1x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = ln x.
B. F ′ (x) = 1x .
C. F ′ (x) = − x12 .
D. F ′ (x) = x22 .
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 2.
B. -3.

C. -1.
D. 1.
Câu 14. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 + i.
B. z = −3 − i.
C. z = 3 − i.

D. z = −3 + i.
Trang 1/5 Mã đề 001


Câu 15. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
A. − .
B. .
C. − .
D. .
4
4
4
4
2
Câu 16. Biết phương trình z + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. −4.

C. −1.
D. 2.
Câu 17. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 4 − i và −4 + i.
C. 4 − i và 2 + 3i.

D. 5 − 2i và −5 + 2i.

Câu 18. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z√2 | + |z3 | + |z4 |.


A. T = 2 3.
B. T = 4.
C. T = 4 + 2 3.
D. T = 2 + 2 3.






−2 − 3i


Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1



= 1.
3

2i

A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 3.
Câu 20. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .
B.
.
C. 25π.
D. 5π.
4
2
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




2
3

A. P = 3.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 22. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 22.
C. r = 5.
D. r = 20.
z+i+1
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một Parabol.
C. Một đường thẳng.
D. Một đường tròn.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.






×