Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (685)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.54 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. 2.

4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 1.
C. -1.

D. 3.

Câu 2. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 1.
A. |z1 + z2 | = 13.







z2
Câu 3. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z1


A. 5.
B. 5.
C. 13.
D. 11.
Câu 4.
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là

√ Cho số phức z1 = 3 + 2i,
B. 3 10.
C. 10 3.
D. 2 30.
A. 130.
Câu 5. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. Q(−2; −3).
C. M(2; −3).
D. N(2; 3).
25

1
1
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
B. −17.
C. 17.
D. −31.

Câu 6. Cho số phức z thỏa
A. 31.

Câu 7. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. −77.
B. 4.
C. 85.

D. 36.

Câu 8. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
B. 18
.
C. 71 .
D. 354 .
A. 359 .
35

Câu 9. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16
.
B. 16π
.
C. 16π
.
D. 169 .
15
15
9
Câu 10. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ−1 .
B. y′ = πxπ .
C. y′ = π1 xπ−1 .

D. y′ = xπ−1 .

Câu 11. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (−∞; 3).
B. (2; 3).
C. (3; +∞).

D. (12; +∞).

Câu 12. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 41 .
B. 12 .

C. 34 .
D. 52 .
Câu 13. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 − (1 + 4i)z + 9 − 7i = 0.
C. z2 − (5 − 2i)z + 9 − 7i = 0.
D. z2 + (1 + 4i)z − 9 + 7i = 0.
Câu 14. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. .
B. .
C. − .
D. − .
2
2
2
2
Câu 15. Căn bậc hai của -4 trong tập số phức là.
A. 2i hoặc -2i.
B. 4i.
C. không tồn tại.

D. 2 hoặc -2.
Trang 1/5 Mã đề 001


Câu 16. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|

bằng bao nhiêu?


D. P = 5.
A. P = 5.
B. P = 13.
C. P = 2 5.
Câu 17. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
D. T =
.
A. T = 3.
B. T = 9.
C. T = .
4
2
Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
A. .
B. .
C. − .
D. − .
4

4
4
4
2
Câu 19. Cho các số phức z thoả mãn (1 + z) là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Một đường thẳng.
C. Parabol.
D. Đường trịn.

Câu 20. (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. < |z| < .
B. |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2

Câu 21. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


B. |z| = 5 2.

C. |z| = 33.
D. |z| = 50.
A. |z| = 10.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1 +
B. w = 1√+ 27i hoặcw =√1 − 27i.
√ 27 hoặcw = 1 −√ 27.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 27 − i hoặcw = 27 + i.
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. x = 2.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 24. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 4.
B. 10 và 4.
C. 5 và 3.
D. 4 và 3.
Câu 25. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. 3π.
C. π.

D. 2π.

Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 33.
B. |z| = 10.
C. |z| = 5 2.
D. |z| = 50.
Câu 27. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 20.
C. r = 22.
D. r = 5.
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.√Để tam giác MNP √
đều là số phức k là
A. w = 1√+ 27 hoặcw = √
1 − 27.
B. w = − 27
√ − i hoặcw = − 27
√ + i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.
Câu 29. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là


A. MN = 5.
B. MN = 2 5.
C. MN = 5.
D. MN = 4.
Trang 2/5 Mã đề 001


Câu 30. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Parabol.
D. Hai đường thẳng.






z−z


=2?
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường thẳng.
B. Một Parabol.

C. Một Elip.
D. Một đường tròn.
Câu 32. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 10 và 4.
C. 5 và 4.
D. 5 và 3.

Câu 33. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
3
3
1
A. < |z| < .
B. |z| > 2.
C. ≤ |z| ≤ 2.
D. |z| < .
2
2
2
2
4
Câu 34. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp!nào sau đây?
!
!
9
1 9

1 5
1
A. 0; .
B. ; +∞ .
C. ; .
D. ; .
4
4
2 4
4 4
Câu 35. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −22016 .
B. 21008 .
C. −21008 .
D. 22016 .
Câu 36. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của√biểu thức P = |z1 | + |z2 |. √


B. P = 34 + 3 2.
C. P = 2 26.
D. P = 4 6.
A. P = 5 + 3 5.
Câu 37. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
A. |w|min = 1.
B. |w|min = .

C. |w|min = 2.
D. |w|min = .
2
2
Câu 38. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. |z| = 1.
B. z là một số thực không dương.
C. Phần thực của z là số âm.
D. z là số thuần ảo.
Câu 39. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y =
.
B. y = x4 − 2x2 + 1.
C. y = −x2 + 3x + 5.
D. y = −x3 − 2x + 3.
5−x
Câu 40. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

−∞

+∞

1
+

y′

+

+∞

2

y
2

−∞

2x + 3
2x − 3
2x + 1
2x − 1
.
B. y =
.
C. y =
.
D. y =
.
x−1
x−1
x−1
x+1
Câu 41. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
A. V = 1.

B. V = .
C. V = .
D. V = .
2
6
3

Câu 42. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (0; +∞).
B. (−∞; 0).
C. (−1; +∞).
D. (−1; 0).
A. y =

Trang 3/5 Mã đề 001


Câu 43. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
Câu 44. Trong các hình dưới đây, có bao nhiêu hình đa diện?

Hình 1

A. 0.


B. 1.

Hình 3

Hình 2

C. 3.

D. 2.

Câu 45. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. −77.

B. 36.

C. 4.

D. 85.

Câu 46. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
=
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 1.

B. 5.

C. 13 .


D.

y−1
2

=

z−1
.
−3

Gọi (P) là mặt

11
.
3

Câu 47. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
A. 14 .

B. 12 .

C. 27 .

Câu 48. Trong không gian Oxyz, cho đường thẳng d :
A. N(2; 1; 2).

B. P(1; 2; 3).

x−1

2

D. 3.
=

y−2
−1

=

z+3
.
−2

Điểm nào dưới đây thuộc d?

C. M(2; −1; −2).

D. Q(1; 2; −3).

Câu 49. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −2.

B.

1
.
e2

C.


1
.
e3

D. −3.

Câu 50. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).

B. (−∞; 1).

C. (1; +∞).

D. (1; 2).
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×