Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = −3 − 3i.
C. w = 3 + 7i.
D. w = 7 − 3i.
Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 1.
C. A = 0.
D. A = 2ki.
Câu 3. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 i. D. (1 + i)2018 = −21009 .
√
Câu 4. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. −1 ≤ m ≤ 0.
B. 0 ≤ m ≤ 1.
C. m ≥ 0 hoặc m ≤ −1. D. m ≥ 1 hoặc m ≤ 0.
Câu 5. Với mọi số phức z, ta có |z + 1|2 bằng
A. z + z + 1.
B. z · z + z + z + 1.
C. z2 + 2z + 1.
4 + 2i + i2017
Câu 6. Số phức z =
có tổng phần thực và phần ảo là
2−i
A. -1.
B. 1.
C. 2.
D. 3.
Câu 7. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. [1; +∞).
B. (1; +∞).
C. (−∞; 1).
D. (−∞; 1].
Câu 8. Tiệm cận ngang của đồ thị hàm số y =
A. y = 23 .
B. y = 13 .
2x+1
3x−1
D. |z|2 + 2|z| + 1.
là đường thẳng có phương trình:
C. y = − 31 .
D. y = − 23 .
Câu 9. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 90◦ .
B. 60◦ .
C. 30◦ .
D. 45◦ .
Câu 10. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
B. 2πrl.
C. 13 πr2 l.
D. πrl.
A. 23 πrl2 .
Câu 11. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
ngun của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
B. 2.
C. 3.
D. 5.
R4
R4
R4
Câu 12. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 1.
B. 5.
C. 6.
D. −1.
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −12.
C. 8.
D. −8.
Câu 14. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 − (5 − 2i)z + 9 − 7i = 0.
C. z2 + (1 + 4i)z − 9 + 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Câu 15. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. −2.
B. 1.
C. 2.
D. 0.
Câu 16. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
B. .
C. − .
D. .
A. − .
4
4
4
4
Trang 1/5 Mã đề 001
Câu 17. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −4.
B. −1.
C. 2.
D. 5.
Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
c
C. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
.
D. Phương trình đã cho có tổng hai nghiệm bằng
a
Câu 19. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường tròn.
C. Parabol.
D. Một đường thẳng.
Câu 20. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 4.
C. r = 22.
D. r = 5.
Câu 21. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 4 và 3.
C. 10 và 4.
D. 5 và 3.
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
.
C. 5π.
D. .
A. 25π.
B.
4
2
Câu 23. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 3 5.
C. max T = 2 10.
D. max T = 2 5.
A. max T = 3 2.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
1 − 27.
B. w = 1 +
A. w = 1√+ 27 hoặcw = √
√ 27i hoặcw = 1 −√ 27i.
D. w = − 27 − i hoặcw = − 27 + i.
C. w = 27 − i hoặcw = 27 + i.
z
Câu 25. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác vuông.
Câu 26. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 4π.
C. 2π.
D. π.
Câu 27. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 3.
B. 5 và 4.
C. 10 và 4.
D. 4 và 3.
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 6.
C. max |z| = 3.
D. max |z| = 4.
z−z
=2?
Câu 29. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường thẳng.
B. Một đường tròn.
C. Một Parabol.
D. Một Elip.
Câu 30. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 2.
C. −1.
D. 1.
Trang 2/5 Mã đề 001
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
A. MN = 4.
B. MN = 5.
C. MN = 2 5.
D. MN = 5.
Câu 32. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 33. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của√biểu thức P = |z1 | + |z
√2 |.
√
√
A. P = 5 + 3 5.
B. P = 4 6.
C. P = 34 + 3 2.
D. P = 2 26.
Câu 34. (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b. Biết z1 = ω + 2i và
z2 = 2ω − 3√là hai nghiệm phức của phương trình z2 + az + b √
= 0. Tính T = |z1 | + |z2 |.
√
√
2 85
2 97
.
B. T = 2 13.
C. T =
.
D. T = 4 13.
A. T =
3
3
√
Câu 35. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
3
3
1
1
B. ≤ |z| ≤ 2.
C. |z| < .
D. |z| > 2.
A. < |z| < .
2
2
2
2
Câu 36. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của√biểu thức T = |z + 1| + 2|z − 1|
A. P = −2016.
B. P = 2016.
C. max T = 2 5.
D. P = 1.
Câu 37. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
1 + z + z2
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
1
3
3
5
7
5
B. < |z| < .
C. < |z| < 2.
D. < |z| < .
A. 2 < |z| < .
2
2
2
2
2
2
√
√
√
2 42 √
Câu 38. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
1
3
5
A. < |z| < 2.
B. 3 < |z| < 5.
C. < |z| < 3.
D. < |z| < 4.
2
2
2
Câu 39. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Hình 1
A. 2.
B. 1.
Hình 3
Hình 2
C. 0.
D. 3.
Câu 40. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (0; +∞).
B. (−1; 0).
C. (−1; +∞).
D. (−∞; 0).
Câu 41. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực đại của hàm số là 0.
B. Giá trị cực tiểu của hàm số là 3.
C. Hàm số có hai điểm cực trị.
D. Hàm số có một điểm cực đại và một điểm cực tiểu.
Câu 42. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y = x4 − 2x2 + 1.
B. y =
.
C. y = −x2 + 3x + 5.
5−x
D. y = −x3 − 2x + 3.
Trang 3/5 Mã đề 001
Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
A. V = 1.
1
B. V = .
2
1
C. V = .
6
1
D. V = .
3
Câu 44. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.
B. (0; 3).
C. x = 0.
D. (1; 2).
Câu 45. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; 2; 3).
B. (1; 2; −3).
C. (−1; −2; −3).
D. (1; −2; 3).
Câu 46. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 2.
B. 12.
C. 6.
D. 4.
Câu 47. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (−6; 7).
C. (6; 7).
D. (7; 6).
Câu 48. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (−∞; 1).
C. (2; +∞).
D. (1; +∞).
Câu 49. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .
B. 30◦ .
C. 60◦ .
D. 90◦ .
Câu 50. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = 1x .
B. y′ =
ln 3
.
x
C. y′ =
1
.
x ln 3
D. y′ = − x ln1 3 .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001