Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 3.
C. 0.
D. 2.
Câu 2. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −7.
B. 7.
C. 3.
D. −3.
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 2ki.
C. A = 2k.
D. A = 1.
Câu 4. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 i. B. (1 + i)2018 = 21009 .
C. (1 + i)2018 = 21009 i.
D. (1 + i)2018 = −21009 .
Câu 5. Cho số phức z thỏa mãn√z(1 + 3i) = 17 + i. Khi√đó mơ-đun của số phức w = 6z − 25i là
A. 5.
B. 2 5.
C. 29.
D. 13.
Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 2.
C. 3.
D. 4.
Câu 7. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (2; 0).
B. (−2; 0).
C. (0; 2).
D. (0; −2).
Câu 8. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 8.
B. 38 .
C. 6.
D. 4.
Câu 9. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 23 .
C. ln 32 .
B. ln 6a2 .
D. ln a.
Câu 10. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 89.
B. 48.
C. 49.
D. 90.
Câu 11. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 30◦ .
B. 90◦ .
C. 45◦ .
D. 60◦ .
Câu R12. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 5 − 2i và −5 + 2i.
C. 4 − i và 2 + 3i.
D. 4 − i và −4 + i.
Trang 1/5 Mã đề 001
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
B. P = 13.
C. P = 5.
D. P = 5.
A. P = 2 5.
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mô-đun của số phức w = z + 1 bằng bao
nhiêu ?.
√
√
√
√
A. |w| = 2 2.
B. |w| = 3.
C. |w| = 2.
D. |w| = 5.
Câu 16. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i√bằng bao nhiêu ?
B. |w| = 73.
C. |w| = 3 5.
D. |w| = 5.
A. |w| = 5.
Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
A. MN = 5.
B. MN = 10.
C. MN = 2 5.
D. MN = 10.
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 3.
B. 2.
C. 4.
D. 1.
Câu 19. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
√
Câu 20. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 33.
C. |z| = 50.
D. |z| = 5 2.
A. |z| = 10.
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là
√
A. MN = 5.
B. MN = 2 5.
C. MN = 5.
D. MN = 4.
Câu 22. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
A. P = 2.
B. P =
.
C. P = 3.
D. P =
.
2
2
√
Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 4.
C. max |z| = 3.
D. max |z| = 7.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 2.
C. 1.
D. −1.
Câu 25. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. x = 2.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 26. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P = 3.
C. P =
.
D. P = 2.
A. P =
2
2
z − z
=2?
Câu 27. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Parabol.
C. Một Elip.
D. Một đường thẳng.
Câu 28. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 5 = 0.
C. x − y + 4 = 0.
D. x + y − 8 = 0.
Trang 2/5 Mã đề 001
Câu 29. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
√
Câu 30. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 4.
D. max |z| = 3.
Câu 31. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 32. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 20.
C. r = 22.
D. r = 5.
2
1
Câu 33. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =