Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (543)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.86 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

4(−3 + i) (3 − i)2
Câu 1. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i


√1 − 2i

A. |w| = 4 5.
B. |w| = 6 3.
C. |w| = 48.
D. |w| = 85.
Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 1.
B. A = 2ki.
C. A = 0.
D. A = 2k.
Câu 3. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
B. |z2 | = |z|2 .
C. z − z = 2a.
D. z + z = 2bi.
A. z · z = a2 − b2 .


Câu 4. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
1008
A. −22016 .
B. −21008 .
C. 21008 .
+ 1.





D. −2
z
2
Câu 5. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z
1


A. 13.
B. 5.
C. 5.
D. 11.
Câu 6. Cho z là một số phức. Xét các mệnh đề sau :

I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 2.
C. 3.
D. 0.
Câu 7. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
B. 18
.
C. 71 .
D. 354 .
A. 359 .
35
i
R2
R2h
Câu 8. Nếu 0 f (x)dx = 4 thì 0 12 f (x) − 2 dx bằng
A. 8.
B. −2.
C. 0.
D. 6.
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 3.
B. 17.
C. 7.
D. 15.

Câu 10. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (2; 3).
C. (−∞; 3).

D. (12; +∞).

Câu 11. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 6.
B. 43 .
C. 23 .
D. 3.
Câu 12. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = xπ−1 .
B. y′ = π1 xπ−1 .
C. y′ = πxπ−1 .

D. y′ = πxπ .

Câu 13. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 4.
B. 1.
C. 2.
D. 3.
Câu 14. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm). Khi đó, mô-đun của √
số phức w = m2 − 3m +√i bằng bao nhiêu ?


A. |w| = 5.
B. |w| = 3 5.
C. |w| = 5.
D. |w| = 73.
Câu 15. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M2 (2; −10).
B. M4 (6; −14).
C. M3 (−2; 10).
D. M1 (6; 14).
Trang 1/5 Mã đề 001


Câu 16. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 − (5 − 2i)z + 9 − 7i = 0.
2
C. z − (1 + 4i)z + 9 − 7i = 0.
D. z2 + (1 + 4i)z − 9 + 7i = 0.
Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?


D. MN = 2 5.
A. MN = 5.
B. MN = 10.
C. MN = 10.
Câu 18. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.

B. 2i hoặc -2i.
C. 2 hoặc -2.

D. 4i.

z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường thẳng.
D. Một Parabol.

Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Elip.

B. Một đường tròn.

Câu 20. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 4π.
D. 3π.
z
Câu 21. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác cân.

Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


D. .
A. 25π.
B. 5π.
C. .
4
2
Câu 23. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 10.
B. max T = 2 5.
C. max T = 3 2.
D. max T = 3 5.
Câu 24. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



3
2
C. P =
.
B. P = 3.

.
D. P = 2.
A. P =
2
2
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
z
Câu 26. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác nhọn.
Câu 27. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .
B.
.
C. 5π.
D. 25π.
4
2

Câu 28. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
B. P = 2.
C. P =
A. P = 3.
.
D. P =
.
2
2
1+i
Câu 29. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
A. S = .
B. S = .
C. S = .
D. S = .
4

2
4
2
Trang 2/5 Mã đề 001


Câu 30. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.√Để tam giác MNP √
đều là số phức k là
A. w = 1 + √27 hoặcw = 1 − √27.
B. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 27 − i hoặcw = 27 + i.
Câu 31. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 5.
C. r = 20.
D. r = 4.
z+i+1
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một đường tròn.
D. Một Parabol.

1

3
Câu 33. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a2 + b2 + c2 − ab − bc − ca.
B. a2 + b2 + c2 + ab + bc + ca.
C. a + b + c.
D. 0.

Câu 34. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
3
1
3
A. < |z| < .
B. |z| < .
C. ≤ |z| ≤ 2.
D. |z| > 2.
2
2
2
2
2z − i
. Mệnh đề nào sau đây đúng?
Câu 35. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
2 + iz
A. |A| > 1.
B. |A| ≥ 1.
C. |A| ≤ 1.

D. |A| < 1.
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?

2

2
A. P = (|z| − 4)2 .
B. P = |z|2 − 2 .
C. P = |z|2 − 4 .
D. P = (|z| − 2)2 .
2
1
Câu 37. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2









z1
1
z2
. Tính giá trị biểu thức P =





×