Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z − z = 2a.
B. |z2 | = |z|2 .
C. z + z = 2bi.
D. z · z = a2 − b2 .
Câu 2. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 i. B. (1 + i)2018 = 21009 .
C. (1 + i)2018 = −21009 . D. (1 + i)2018 = 21009 i.
Câu 3. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là 3 và phần ảo là 2i.
B. Phần thực là3 và phần ảo là 2.
C. Phần thực là −3 và phần ảo là−2.
D. Phần thực là−3 và phần ảo là −2i.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 1.
B. 2.
C. 21008 .
D. 0.
25
1
1
Câu 5. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 17.
B. 31.
C. −17.
D. −31.
2(1 + 2i)
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
Câu 6. Cho số phức z thỏa mãn (2 + i)z +
1+i
A. 3.
B. 4.
C. 13.
D. 5.
Câu 4. Số phức z =
Câu 7. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; +∞).
C. (−∞; 1).
D. (1; 2).
Câu 8. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. (−∞; 1).
C. [1; +∞).
R 1
Câu 9. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = x22 .
C. F ′ (x) = − x12 .
B. F ′ (x) = 1x .
D. (1; +∞).
D. F ′ (x) = ln x.
Câu 10. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .
B. 60◦ .
C. 90◦ .
D. 30◦ .
2
−16
Câu 11. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 184.
B. 186.
C. 92.
x2 −16
?
27
D. 193.
Câu 12. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 169 .
B. 16π
.
C. 16
.
D. 16π
.
15
15
9
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. − .
B. .
C. − .
D. .
2
2
2
2
Câu 14. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
A. MN = 10.
B. MN = 10.
C. MN = 2 5.
D. MN = 5.
Câu 15. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = .
B. T =
.
C. T = 9.
D. T = 3.
4
2
Trang 1/5 Mã đề 001
Câu 16. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 5.
C. |w| = 2 2.
D. |w| = 3.
A. |w| = 2.
Câu 17. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 5 − 2i và −5 + 2i.
C. 4 − i và 2 + 3i.
D. 4 − i và −4 + i.
Câu 18. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm). Khi đó, mô-đun của√số phức w = m2 − 3m + i√bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 5.
C. |w| = 3 5.
D. |w| = 73.
Câu 19. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
C. .
D. √ .
A. √ .
B. √ .
2
13
2
5
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là
√
B. MN = 5.
C. MN = 4.
D. MN = 2 5.
A. MN = 5.
Câu 21. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
B. w = − 27
27 + i.
A. w = 1√+ 27i hoặcw =√1 − 27i.
√ − i hoặcw = − √
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
z
Câu 22. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác đều.
Câu 23. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 4π.
C. π.
D. 3π.
z+i+1
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một Parabol.
D. Một đường tròn.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
.
C. .
D. 25π.
A. 5π.
B.
2
4
Câu 26. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 5.
C. r = 4.
D. r = 20.
Câu 27. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 5.
C. max T = 3 2.
D. max T = 2 10.
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 6.
C. max |z| = 7.
D. max |z| = 3.
Câu 29. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 5 và 3.
C. 10 và 4.
D. 4 và 3.
Trang 2/5 Mã đề 001
Câu 30. Biết số phức z thỏa mãn |z − 3 − 4i| =
Tính |z|. √
√
A. |z| = 5 2.
B. |z| = 10.
√
5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
C. |z| = 50.
D. |z| =
√
33.
Câu 31. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9 9
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
D. .
A. √ .
B. √ .
C. √ .
2
13
5
2
−2 − 3i
Câu 32. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
C. max |z| = 2.
D. max |z| = 1.
A. max |z| = 3.
B. max |z| = 2.
√
2 2
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
√
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √2.
8
2 2
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
3
3
√
2
. Giá trị lớn nhất của biểu thức
Câu 34. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
2
P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng
√ bao nhiêu?
√
√
4 5
7 2
10 2
3 6
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
5
3
3
2
√
2
Câu 35. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
và điểm A trong hình vẽ bên là điểm
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm P.
1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz
B. điểm M.
C. điểm Q.
D. điểm N.
Câu 36. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
Câu 37. (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b. Biết z1 = ω + 2i và
z2 = 2ω − 3√là hai nghiệm phức của √
phương trình z2 + az + b = 0. Tính T = |z1 | + |z2 |.
√
√
2 97
2 85
A. T =
.
B. T =
.
C. T = 2 13.
D. T = 4 13.
3
3
Câu 38. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 4.
B. 8.
C. 9.
D. 18.
x+1
Câu 39. Cho hàm số y =
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
điểm của (C) và d.
A. 0.
B. 3.
C. 2.
D. 1.
Câu 40. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 3a3 .
B. V = 12a3 .
C. V = a3 .
D. V = 6a3 .
Câu 41. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A. y = −x3 − 2x + 3.
B. y = −x2 + 3x + 5.
C. y = x4 − 2x2 + 1.
D. y =
x−3
.
5−x
Trang 3/5 Mã đề 001
Câu 42. Cho hàm số y =
2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (−2; +∞).
B. Hàm số đồng biến trên tập xác định của nó.
C. Hàm số đồng biến trên khoảng (−2; 2).
D. Hàm số đồng biến trên khoảng (2; +∞).
Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
A. V = .
6
Câu 44. Cho hàm số y =
A. 3.
1
B. V = .
2
D. V = 1.
x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 0.
Câu 45. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 31 .
1
C. V = .
3
B. y = − 23 .
C. 2.
2x+1
3x−1
D. −1.
là đường thẳng có phương trình:
C. y = 13 .
D. y = 23 .
Câu 46. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 2πrl.
B. 31 πr2 l.
C. πrl.
D. 32 πrl2 .
Câu 47. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (−2; 0).
B. (0; −2).
C. (0; 2).
D. (2; 0).
Câu 48. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).
B. (3; +∞).
C. (−∞; 3).
D. (2; 3).
Câu 49. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (3; 4).
B. (6; 7).
C. (4; 5).
D. (2; 3).
Câu 50. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 30◦ .
B. 90◦ .
C. 45◦ .
D. 60◦ .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001