Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (735)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.61 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. 0 và 1.
C. C.Truehỉ có số 0.

D. Khơng có số nào.

Câu 2. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .

C. |z1 + z2 | = 5.
D. |z1 + z2 | = 13.
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 5.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 3. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. |z| = 4.


B. z là số thuần ảo.
C. z = .
D. z = z.
z
(1 + i)(2 − i)
Câu 4. Mô-đun của số phức z =

1 + 3i


A. |z| = 5.
B. |z| = 1.
C. |z| = 2.
D. |z| = 5.
Câu 5. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là 3 và phần ảo là 2i.
D. Phần thực là−3 và phần ảo là −2i.
Câu 6.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w√= 6z − 25i là
B. 13.
C. 5.
D. 2 5.
A. 29.
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị ngun
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 3.
B. 5.
C. 2.

D. 4.
Câu 8. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (3; +∞).
B. (−∞; 1).
C. (0; 2).

D. (1; 3).

Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




B. 2a3 .
D. 42 a3 ..
A. 62 a3 .
C. 22 a3 .
Câu 10. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (−6; 7).
B. (7; 6).
C. (7; −6).
D. (6; 7).
Câu 11. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 2.
B. 4.
C. 3.
D. 1.

Câu 12. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √
phẳng (S AB) bằng
A. 245 .
B. 245 .
C. 4 2.
D. 8 2.
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
B. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
C. Phương trình đã cho ln có nghiệm.
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Trang 1/5 Mã đề 001


Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -3.
C. -1.
D. 2.
Câu 15. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|

bằng bao √
nhiêu?

A. P = 5.
B. P = 5.
C. P = 13.
D. P = 2 5.
Câu 16. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 + i.
B. z = 3 − i.
C. z = −3 + i.

D. z = −3 − i.

Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 4i.
B. 2 hoặc -2.
C. 2i hoặc -2i.

D. không tồn tại.

Câu 18. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√ Khi đó, mơ-đun của số phức w = m − 3m +√i bằng bao nhiêu ?

B. |w| = 5.
C. |w| = 5.
D. |w| = 73.
A. |w| = 3 5.

z
Câu 19. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác cân.
Câu 20. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 1)2 + (y − 4)2 = 125.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x + 1)2 + (y − 2)2 = 125.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



2
3
.
B. P =
.
C. P = 3.
D. P = 2.
A. P =
2

2
Câu 22. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. .
B. √ .
C. √ .
D. √ .
2
13
2
5
Câu 23. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 2.
D. 0.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.

B. Một đường thẳng.
C. Đường tròn.
D. Hai đường thẳng.
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 26. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√độ dài của MN là

A. MN = 4.
B. MN = 2 5.
C. MN = 5.
D. MN = 5.

Câu 27. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 3.
C. max |z| = 7.
D. max |z| = 6.






z−z



=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
Trang 2/5 Mã đề 001


Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
z+i+1
là số thuần ảo?
Câu 30. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức

P = |z1 + z2 |.




3
2
A. P = 3.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 32. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. x = 2.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là số thuần ảo.
B. Phần thực của z là số âm.
C. |z| = 1.
D. z là một số thực không dương.







1
Câu 34. Cho số phức z thỏa mãn


z +


= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z


A. 3.
B. 5.
C. 5.
D. 13.


√ 

2 42 √
Câu 35. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
3
1
5

B. < |z| < 3.
C. < |z| < 2.
D. 3 < |z| < 5.
A. < |z| < 4.
2
2
2
Câu 36. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 0.
B. P = −2016.
C. P = 2016.
D. P = 1.
Câu 37. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của biểu


√ thức P = |z1 | + |z2 |. √
B. P = 5 + 3 5.
C. P = 2 26.
D. P = 4 6.
A. P = 34 + 3 2.
Câu 38. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1

A. |z| = .
B. |z| = 4.
C. |z| = 1.
D. |z| = 2.
2
Câu 39. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y = −x3 − 2x + 3.
B. y = −x2 + 3x + 5.
C. y = x4 − 2x2 + 1.
D. y =
.
5−x
Câu 40. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

−∞

+∞

1
+

y′

+
+∞

2


y
2

−∞

2x + 3
2x − 1
2x − 3
2x + 1
.
B. y =
.
C. y =
.
D. y =
.
x−1
x+1
x−1
x−1
Câu 41. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực tiểu của hàm số là 3.
B. Hàm số có một điểm cực đại và một điểm cực tiểu.
A. y =

Trang 3/5 Mã đề 001


C. Hàm số có hai điểm cực trị.
D. Giá trị cực đại của hàm số là 0.


Câu 42. Cho hàm số y =

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

điểm của (C) và d.
A. 0.

B. 2.

C. 1.

D. 3.

Câu 43. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối bát diện đều.

B. Khối mười hai mặt đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 44. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
A. V = .

6

1
B. V = .
2

1
C. V = .
3

D. V = 1.

Câu 45. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (3; +∞).

B. (−∞; 1).

C. (0; 2).

D. (1; 3).

Câu 46. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n3 = (1; 1; 1).
B. →

n1 = (−1; 1; 1).
C. →
n2 = (1; −1; 1).
D. →
n4 = (1; 1; −1).
Câu 47. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ =

1
.
x ln 3

B. y′ = 1x .

C. y′ = − x ln1 3 .

D. y′ =

ln 3
.
x

Câu 48. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng




A. 2a.
B. 22 a.

C. 33 a.
D. 2 3 3 a.
Câu 49. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).

B. (0; 1).

Câu 50. Có bao nhiêu số nguyên x thỏa mãn log3
A. 184.

B. 186.

C. (1; 2).
x2 −16
343

< log7

C. 193.

D. (−1; 2).
x2 −16
?
27

D. 92.
Trang 4/5 Mã đề 001



- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×