Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. −7.
C. −3.
D. 7.
!2016
!2018
1−i
1+i
+
bằng
Câu 2. Số phức z =
1−i
1+i
A. 2.
B. 0.
C. 1 + i.
D. −2.
Câu 3. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. N(2; 3).
B. P(−2; 3).
C. M(2; −3).
D. Q(−2; −3).
25
1
1
Câu 4. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 31.
B. −31.
C. 17.
D. −17.
Câu 5. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 1.
A. |z1 + z2 | = 5.
B. |z1 + z2 | = 13.
Câu 6. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 2i.
C. 11 + 2i.
D. −3 − 10i.
Câu 7. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 60◦ .
B. 90◦ .
C. 45◦ .
D. 30◦ .
R4
R4
R4
Câu 8. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. 6.
C. 1.
D. −1.
Câu R9. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
2
−16
Câu 10. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 186.
B. 193.
C. 92.
x2 −16
?
27
D. 184.
Câu 11. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 2πrl.
B. 13 πr2 l.
C. πrl.
D. 32 πrl2 .
Câu 12. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt
phẳng (S CD) bằng
√
√
√
√
2
A. 2 a.
B. 2a.
C. 2 3 3 a.
D. 33 a.
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
1
3
3
A. − .
B. .
C. − .
D. .
2
2
2
2
3
2
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z −z +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
A. P = 5.
B. P = 13.
C. P = 5.
D. P = 2 5.
Câu 15. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
B. − .
C. − .
D. .
A. .
4
4
4
4
Trang 1/5 Mã đề 001
Câu 16. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
2
C. z − (5 − 2i)z + 9 − 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Câu 17. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 + i và −4 + i.
C. 5 − 2i và −5 + 2i.
D. 4 − i và −4 + i.
Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 3.
B. |w| = 2.
C. |w| = 5.
D. |w| = 2 2.
z+i+1
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một đường thẳng.
C. Một đường tròn.
D. Một Elip.
1+i
Câu 20. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
B. S = .
C. S = .
D. S = .
A. S = .
4
4
2
2
z−z
=2?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Elip.
Câu 22. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 4 = 0.
C. x − y + 8 = 0.
D. x + y − 8 = 0.
Câu 23. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 5π.
B. 25π.
C. .
D. .
2
4
−2
−
3i
Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
Câu 26. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 2π.
D. 4π.
Câu 27. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
A. √ .
B. √ .
C. √ .
D. .
2
13
2
5
z
Câu 28. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác cân.
Câu 29. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 4π.
D. 3π.
Trang 2/5 Mã đề 001
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
B. 25π.
C. .
D. 5π.
A. .
4
2
1+i
Câu 31. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
4
4
2
2
Câu 32. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
.
D. P =
.
B. P = 3.
C. P =
A. P = 2.
2
2
z
Câu 33. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√ M = |z + 1 − i| là
√
A. 2.
B. 2 2.
C. 8.
D. 2.
Câu 34. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
Khi đó mệnh đề nào sau đây đúng?
5
3
A. 2 < |z| < .
B. < |z| < 2.
2
2
C.
1
3
< |z| < .
2
2
Câu 35. Cho số phức z , 0 sao cho z không phải là số thực và w =
D.
1 + z + z2
là số thực.
1 − z + z2
5
7
< |z| < .
2
2
z
là số thực. Tính giá trị biểu
1 + z2
|z|
bằng?
1√+ |z|2
2
1
1
.
B. .
C. 2.
D. .
A.
3
2
5
Câu 36. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 1.
B. |z| = .
C. |z| = 2.
D. |z| = 4.
2
Câu 37. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 2016.
B. P = −2016.
C. P = 0.
D. P = 1.
√
Câu 38. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
3
1
3
1
A. |z| > 2.
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Câu 39. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối tứ diện đều.
B. Khối mười hai mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
thức
Câu 40. Hình đa diện dưới đây có bao nhiêu cạnh?
A. 15.
B. 21.
C. 18.
D. 12.
Trang 3/5 Mã đề 001
Câu 41. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. −35.
B. 1.
C. 17.
D. −10.
Câu 42. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
A. y =
2x − 1
.
x+1
B. y =
2x + 1
.
x−1
−∞
C. y =
2x − 3
.
x−1
D. y =
2x + 3
.
x−1
Câu 43. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 1.
Câu 44. Cho hàm số y =
B. 0.
C. 3.
D. 2.
x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
điểm của (C) và d.
A. 0.
B. 3.
C. 2.
D. 1.
Câu 45. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (6; 7).
B. (−6; 7).
C. (7; 6).
D. (7; −6).