Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (656)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.82 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

4 − 2i (1 − i)(2 + i)
Câu 1. Phần thực của số phức z =
+

2−i
2 + 3i
29
29
11
11
A. .
B. − .
C. .
D. − .
13
13
13
13
2
2016
Câu 2. Phần thực của số phức z = 1 + (1 + i) + (1 + i) + · · · + (1 + i)

1008


1008
2016
A. −2
+ 1.
B. −2 .
C. −2 .
D. 21008 .
Câu 3. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 3.
C. 4.
D. 2.
2017
(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 4. Số phức z =
21008 i
A. 21008 .
B. 1.
C. 0.
D. 2.
Câu 5. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 − 10i.
B. −3 − 2i.
C. −3 + 2i.


D. 11 + 2i.






z2
Câu 6. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z1


A. 11.
B. 13.
C. 5.
D. 5.

Câu 7. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (1; +∞).
B. (−∞; 1].
C. [1; +∞).

D. (−∞; 1).


Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 17.
B. 15.
C. 7.
D. 3.
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. −1.
C. 2.
D. 0.
Câu 10. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 22 a3 .
B. 42 a3 ..
C. 62 a3 .
D. 2a3 .
Câu 11. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 85.
B. −77.
C. 36.

D. 4.

Câu 12. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng

16
A. 169 .
B. 16π
.
C. 16π
.
D. 15
.
15
9
Câu 13. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

A. P = 5.
B. P = 2 5.
C. P = 13.
D. P = 5.
Câu 14. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
A. .
B. .
C. − .
D. − .
4
4

4
4
Trang 1/4 Mã đề 001


Câu 15. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 − i và −4 + i.
C. 4 + i và −4 + i.

D. 5 − 2i và −5 + 2i.

Câu 16. Biết z0 là nghiệm phức có phần ảo dương của phương trình z − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M1 (6; 14).
B. M2 (2; −10).
C. M3 (−2; 10).
D. M4 (6; −14).
2

Câu 17. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mô-đun của số phức w = m2 − 3m +√i bằng bao nhiêu ?

A. |w| = 73.
B. |w| = 5.
C. |w| = 5.
D. |w| = 3 5.
Câu 18. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?

A. −4.
B. 5.
C. 2.
D. −1.

Câu 19. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
B. ≤ |z| ≤ 2.
C. < |z| < .
D. |z| > 2.
A. |z| < .
2
2
2
2






−2 − 3i
Câu 20. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1



= 1.
3

2i

A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
Câu 21. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 5 và 3.
C. 5 và 4.
D. 10 và 4.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là


D. MN = 5.
A. MN = 5.
B. MN = 4.
C. MN = 2 5.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để

B. w = 1√+ 27 hoặcw = √
1 − 27.
A. w = − 27
√ − i hoặcw = − 27
√ + i.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 27 − i hoặcw = 27 + i.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 5π.
C. .
D. 25π.
A. .
2
4
Câu 25. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 4.
C. r = 20.
D. r = 5.
Câu 26. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 2π.
D. 3π.
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là

hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. 3π.
D. π.
Câu 28. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 10 và 4.
B. 4 và 3.
C. 5 và 4.
D. 5 và 3.
Câu 29. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 2.
B. P = 3.
C. P =
.
D. P =
.
2
2
Trang 2/4 Mã đề 001




Câu 30. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
C. < |z| < .
D. |z| < .
A. |z| > 2.
B. ≤ |z| ≤ 2.
2
2
2
2
Câu 31. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 1.
D. 2.
Câu 32. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .
B. 25π.
C. 5π.
D. .
4

2
z
Câu 33. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức

√ M = |z + 1 − i| là
B. 8.
C. 2.
D. 2.
A. 2 2.
4
Câu 34. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp
nào
sau
đây?
!
!
!
1 5
1 9
9
1
B. ; .
C. ; .
D. ; +∞ .
A. 0; .

4
4 4
2 4
4
Câu 35. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn

1 + z + z2
là số thực.
1 − z + z2

Khi đó mệnh đề nào sau đây đúng?
3
5
5
7
1
3
A. < |z| < 2.
B. 2 < |z| < .
C. < |z| < .
D. < |z| < .
2
2
2
2
2
2
2016
2015
Câu 36. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z +z +· · ·+z+1 = 0

2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 0.
B. P = 1.
C. P = −2016.
D. P = 2016.

Câu 37. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
C. |w|min = .
D. |w|min = 2.
A. |w|min = 1.
B. |w|min = .
2
2

Câu 38. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
3
1
3
A. |z| > 2.
B. ≤ |z| ≤ 2.

C. < |z| < .
D. |z| < .
2
2
2
2
x+1
Câu 39. Cho hàm số y =
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
A. 3.
B. 0.
C. −1.
D. 2.
Câu 40. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
B. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
C. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
D. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
Câu 41. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

−∞

+∞

1
+


y′

+
+∞

2

y
2

−∞
Trang 3/4 Mã đề 001


A. y =

2x − 1
.
x+1

Câu 42. Cho hàm số y =

B. y =

2x + 1
.
x−1

C. y =


2x + 3
.
x−1

D. y =

2x − 3
.
x−1

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

điểm của (C) và d.
A. 2.

B. 1.

C. 3.

D. 0.

Câu 43. Cho hàm số y = f (x) có bảng biến thiên như sau:

x

−∞

y′


+∞

−2



+∞

−2
y

−2

−∞

Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 2.

B. 3.

C. 4.

D. 1.

Câu 44. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. (1; 2).

B. x = 1.


C. x = 0.

D. (0; 3).

Câu 45. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; 6).

B. (−6; 7).

C. (6; 7).

D. (7; −6).

Câu 46. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).

B. (−∞; 1).

C. (2; +∞).

D. (1; +∞).

Câu 47. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.

B. 3.

C. −1.


D. 0.

C. −2.

D. 2.

Câu 48. Phần ảo của số phức z = 2 − 3i là
A. 3.

B. −3.

Câu 49. Cho hình chóp S .ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 60◦ .

B. 30◦ .

C. 90◦ .

D. 45◦ .

Câu 50. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A.

16π
.
15


B.

16π
.
9

C.

16
.
9

D.

16
.
15

Trang 4/4 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 001


×