Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001
Câu 1. Số phức z =
A. 1.
4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 3.
C. 2.
D. -1.
Câu 2. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. M(2; −3).
C. N(2; 3).
D. Q(−2; −3).
2
4(−3 + i) (3 − i)
Câu 3. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√
√
√1 − 2i
√
B. |w| = 6 3.
C. |w| = 48.
D. |w| = 85.
A. |w| = 4 5.
z2
Câu 4. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 13.
B. 5.
C. 11.
D. 5.
4 − 2i (1 − i)(2 + i)
Câu 5. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
11
29
11
B.
.
C. .
D. − .
A. − .
13
13
13
13
Câu 6. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.
√
34
5 34
.
B. |z| = 34.
C. |z| =
.
D. |z| = 34.
A. |z| =
3
3
Câu 7. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (6; 7).
C. (7; 6).
D. (−6; 7).
Câu 8. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 0.
B. 3.
C. 2.
D. −1.
Câu 9. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n2 = (1; −1; 1).
B. →
n1 = (−1; 1; 1).
C. →
n3 = (1; 1; 1).
D. →
n4 = (1; 1; −1).
R 1
Câu 10. Cho x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = x22 .
B. F ′ (x) = − x12 .
C. F ′ (x) = 1x .
D. F ′ (x) = ln x.
Câu 11. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
B. 5.
C. 2.
D. 3.
Câu 12. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 12.
B. 6.
C. 5.
D. 11.
Câu 13. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M2 (2; −10).
B. M3 (−2; 10).
C. M1 (6; 14).
D. M4 (6; −14).
Câu 14. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 15. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mô-đun của
số phức w =√z2 + 2z bằng bao nhiêu?√
√
A. |w| = 5 13.
B. |w| = 13.
C. |w| = 37.
D. |w| = 5.
Trang 1/4 Mã đề 001
Câu 16. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
B. T = 4 + 2 3.
C. T = 4.
D. T = 2 3.
A. T = 2 + 2 3.
Câu 17. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
−b
C. Phương trình đã cho có tổng hai nghiệm bằng
.
a
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 18. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 + i và −4 + i.
C. 4 − i và 2 + 3i.
D. 4 − i và −4 + i.
Câu 19. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. x = 2.
2
2
C. (x + 1) + (y − 2) = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 20. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 2π.
C. 3π.
D. π.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
B. P = 2.
C. P =
.
D. P =
.
A. P = 3.
2
2
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
B. w = − 27
−
i
hoặcw
=
−
27 + i.
A. w = 1√+ 27i hoặcw =√1 − 27i.
√
√
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Một đường thẳng.
C. Hai đường thẳng.
D. Đường tròn.
√
Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 33.
B. |z| = 10.
C. |z| = 5 2.
D. |z| = 50.
z+i+1
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một Parabol.
D. Một đường tròn.
Câu 27. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
Câu 28. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
A. √ .
B. √ .
C. √ .
D. .
2
13
2
5
Trang 2/4 Mã đề 001
√
Câu 29. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 7.
C. max |z| = 4.
D. max |z| = 6.
Câu 30. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
z−z
=2?
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho