Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001
4 − 2i (1 − i)(2 + i)
Câu 1. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
29
11
A. .
B. − .
C. − .
13
13
13
Câu 2. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Khơng có số nào.
B. C.Truehỉ có số 0.
C. Chỉ có số 1.
D.
11
.
13
D. 0 và 1.
Câu 3. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là−3 và phần ảo là −2i.
B. Phần thực là3 và phần ảo là 2.
C. Phần thực là 3 và phần ảo là 2i.
D. Phần thực là −3 và phần ảo là−2.
Câu 4. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = −3 − i.
B. z = −3 + i.
C. z = 3 − i.
D. z = 3 + i.
Câu 5. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. Q(−2; −3).
B. N(2; 3).
C. M(2; −3).
D. P(−2; 3).
Câu 6. Tính mơ-đun của số phức z√thỏa mãn z(2 − i) + 13i = 1.
√
34
A. |z| = 34.
B. |z| =
.
C. |z| = 34.
3
i
R2
R2h
Câu 7. Nếu 0 f (x)dx = 4 thì 0 21 f (x) − 2 dx bằng
A. 6.
B. 8.
C. 0.
√
5 34
D. |z| =
.
3
D. −2.
Câu 8. Cho hàm số y = ax+b
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
cx+d
số đã cho và trục hoành là
A. (−2; 0).
B. (0; 2).
C. (0; −2).
D. (2; 0).
Câu 9. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. [1; +∞).
C. (−∞; 1).
D. (1; +∞).
Câu 10. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
A. 359 .
B. 354 .
C. 35
.
D. 71 .
Câu 11. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
R4
R4
R4
Câu 12. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 1.
B. 5.
C. 6.
D. −1.
Câu 13. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 < m < .
C. m < 0 hoặc m > . D. 0 ≤ m < .
4
4
4
Câu 14. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 2i hoặc -2i.
C. 4i.
D. 2 hoặc -2.
Câu 15. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
A. MN = 10.
B. MN = 10.
C. MN = 2 5.
D. MN = 5.
Trang 1/4 Mã đề 001
Câu 16. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
1
3
A. .
B. − .
C. .
D. − .
2
2
2
2
3
2
Câu 17. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z −z +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
B. P = 2 5.
C. P = 13.
D. P = 5.
A. P = 5.
Câu 18. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 2.
B. -3.
C. 1.
D. -1.
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 3 5.
C. max T = 3 2.
D. max T = 2 10.
A. max T = 2 5.
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. π.
C. 4π.
D. 2π.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P = 3.
.
D. P = 2.
A. P =
C. P =
2
2
Câu 22. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 5 và 4.
C. 10 và 4.
D. 5 và 3.
√
Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 6.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Hai đường thẳng.
D. Một đường thẳng.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = − 27
−
i
hoặcw
=
−
27
+
i.
B.
w
=
1
+
27
hoặcw
=
1
−
27.
√
√
√
√
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 27 − i hoặcw = 27 + i.
Câu 26. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 27. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 5 và 3.
C. 10 và 4.
D. 5 và 4.
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 3.
C. max |z| = 6.
D. max |z| = 4.
Câu 29. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 2 10.
B. max T = 3 2.
C. max T = 2 5.
D. max T = 3 5.
−2 − 3i
Câu 30. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
Câu 31. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. −1.
C. 2.
D. 1.
Trang 2/4 Mã đề 001
Câu 32. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
A. S = .
B. S = .
C. S = .
2
2
4
1+i
z
2
15
.
4
D. S =
√
2
Câu 33. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | + 2|z
√ 2 + z3 | + 3|z3 + z1 | bằng
√ bao nhiêu?
√
√
10 2
4 5
3 6
7 2
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
3
5
2
3
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.
√
√
√
A. 15.
B. 10.
C. 2 5.
D. 5.
z
Câu 35. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√ M = |z + 1 − i| là √
B. 2.
C. 2.
D. 8.
A. 2 2.
√
2
Câu 36. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
và điểm A trong hình vẽ bên là điểm
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm M.
1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz
B. điểm P.
C. điểm N.
D. điểm Q.
Câu 37. (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
B. |z| = 1.
C. |z| = 2.
D. |z| = 4.
A. |z| = .
2
Câu 38. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 2016.
B. P = −2016.
C. P = 1.
D. P = 0.
Câu 39. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 2.
B. 3.
C. 1.
D. 0.
Câu 40. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối mười hai mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 41. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (0; +∞).
B. (−1; +∞).
C. (−1; 0).
D. (−∞; 0).
Câu 42. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A. y = x4 − 2x2 + 1.
Câu 43. Cho hàm số y =
điểm của (C) và d.
A. 3.
B. y = −x3 − 2x + 3.
C. y = −x2 + 3x + 5.
D. y =
x−3
.
5−x
x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
B. 2.
C. 0.
D. 1.
Câu 44. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
Trang 3/4 Mã đề 001
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
A. y =
2x + 3
.
x−1
B. y =
2x − 3
.
x−1
Câu 45. Có bao nhiêu số nguyên x thỏa mãn log3
A. 184.
B. 186.
−∞
C. y =
x2 −16
343
2x − 1
.
x+1
< log7
C. 193.
D. y =
2x + 1
.
x−1
x2 −16
?
27
D. 92.
Câu 46. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 47. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 31 πr2 l.
B. 2πrl.
C. 23 πrl2 .
D. πrl.
Câu 48. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 48.
B. 89.
C. 90.
D. 49.
Câu 49. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d < R.
B. d = R.
C. d = 0.
D. d > R.
Câu 50. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 0.
B. −1.
C. 3.
D. 2.
Trang 4/4 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/4 Mã đề 001