Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001
Câu 1. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 .
B. −22016 .
C. 21008 .
D. −21008 + 1.
Câu 2. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. 3.
C. −7.
D. −3.
!2016
!2018
1+i
1−i
Câu 3. Số phức z =
+
bằng
1−i
1+i
A. 0.
B. −2.
C. 1 + i.
D. 2.
Câu 4. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 4.
C. 1.
D. 3.
Câu 5. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. Khơng có số nào.
C. 0 và 1.
D. C.Truehỉ có số 0.
Câu 6. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. |z2 | = |z|2 .
B. z · z = a2 − b2 .
C. z + z = 2bi.
D. z − z = 2a.
Câu 7. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 49.
B. 89.
C. 48.
D. 90.
Câu 8. Cho khối chóp S .ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 12.
B. 2.
C. 4.
D. 6.
Câu 9. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ−1 .
B. y′ = xπ−1 .
C. y′ = π1 xπ−1 .
D. y′ = πxπ .
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 2).
B. (−1; 2).
C. (0; 1).
D. (1; 0).
Câu 11. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 60◦ .
B. 90◦ .
C. 45◦ .
D. 30◦ .
Câu 12. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 22 a3 .
B. 62 a3 .
C. 42 a3 ..
D. 2a3 .
Câu 13. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 3.
B. |w| = 5.
C. |w| = 2 2.
D. |w| = 2.
Trang 1/4 Mã đề 001
Câu 14. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i√bằng bao nhiêu ?
√
C. |w| = 3 5.
D. |w| = 73.
A. |w| = 5.
B. |w| = 5.
Câu 15. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
A. T = 2 + 2 3.
B. T = 2 3.
C. T = 4.
D. T = 4 + 2 3.
Câu 16. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. 5.
C. 2.
D. −4.
Câu 17. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
.
B. Phương trình đã cho có tổng hai nghiệm bằng
a
C. Phương trình đã cho ln có nghiệm.
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 3.
D. 2.
−2 − 3i
z + 1
= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
3
−
2i
√
A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 1.
D. max |z| = 2.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 3.
B. 4 và 3.
C. 5 và 4.
D. 10 và 4.
z−z
=2?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Parabol.
C. Một đường thẳng.
D. Một Elip.
√
Câu 22. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. |z| < .
B. |z| > 2.
C. ≤ |z| ≤ 2.
D. < |z| < .
2
2
2
2
z+i+1
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một Parabol.
C. Một đường thẳng.
D. Một đường tròn.
√
Câu 24. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 3.
D. max |z| = 4.
Câu 25. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 4.
C. r = 22.
D. r = 20.
Câu 26. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.
C. r = 5.
D. r = 4.
√
Câu 27. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 33.
B. |z| = 50.
C. |z| = 5 2.
D. |z| = 10.
z − z