Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (609)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.37 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số thực.

B. Mô-đun của số phức z là số thực không âm.
D. Mô-đun của số phức z là số phức.

Câu 2. Cho hai√số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 1.
A. |z1 + z2 | = 13.
Câu 3. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 3.
B. 1.
C. 2.
D. 0.
4 − 2i (1 − i)(2 + i)


Câu 4. Phần thực của số phức z =
+

2−i
2 + 3i
29
11
11
29
A. .
B.
.
C. − .
D. − .
13
13
13
13
2
4(−3 + i) (3 − i)
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 5. Cho số phức z thỏa mãn z =
−i



√1 − 2i
A. |w| = 48.
B. |w| = 6 3.

C. |w| = 85.
D. |w| = 4 5.
Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 3.
C. 2.

D. 4.

Câu 7. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 8.
B. 6.
C. 4.
D. 83 .
R
Câu 8. Cho 1x dx = F(x) + C. Khẳng định nào dưới đây đúng?
A. F ′ (x) = x22 .
B. F ′ (x) = − x12 .
C. F ′ (x) = ln x.
D. F ′ (x) = 1x .
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 15.
B. 3.
C. 17.
D. 7.
Câu R10. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?

2
A. f (x)dx = sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 11. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
=
2
−1
A. Q(1; 2; −3).
B. N(2; 1; 2).
C. P(1; 2; 3).

z+3
.
−2

Điểm nào dưới đây thuộc d?
D. M(2; −1; −2).

Câu 12. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √
phẳng (S AB) bằng
24

5
A. 24 .
B. 5 .
C. 8 2.
D. 4 2.
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của số phức w = m2 − 3m + i√bằng bao nhiêu ?

A. |w| = 73.
B. |w| = 5.
C. |w| = 3 5.
D. |w| = 5.
Trang 1/4 Mã đề 001


Câu 14. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√

A. |w| = 13.
B. |w| = 37.
C. |w| = 5 13.
D. |w| = 5.
Câu 15. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 3.
B. 2.
C. 4.
D. 1.
Câu 16. Tất cả các căn bậc hai của số phức z = 15 − 8i là:

A. 4 − i và 2 + 3i.
B. 4 + i và −4 + i.
C. 4 − i và −4 + i.

D. 5 − 2i và −5 + 2i.

Câu 17. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 + i.
C. z = −3 − i.

D. z = 3 + i.

Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √



A. |w| = 3.
B. |w| = 5.
C. |w| = 2.
D. |w| = 2 2.
Câu 19. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2

2
2
1
1
4
A. √ .
B. .
C. √ .
D. √ .
2
13
5
2
Câu 20. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 10.
B. max T = 3 5.
C. max T = 2 5.
D. max T = 3 2.
Câu 21. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.
C. r = 4.
D. r = 5.
Câu 22. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là

một hình trịn có diện tích bằng


.
C. .
D. 5π.
A. 25π.
B.
2
4





z − z





=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một đường thẳng.
B. Một Parabol.
C. Một Elip.

D. Một đường tròn.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. −1.
C. 1.
D. 0.

Câu 25. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 3.
C. max |z| = 6.
D. max |z| = 7.

Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 33.
C. |z| = 50.
D. |z| = 10.
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ Để tam giác MNP
√ đều là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức.
B. w = 27√− i hoặcw = 27 √
+ i.
A. w = − 27

√ − i hoặcw = − 27
√ + i.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 1 + 27 hoặcw = 1 − 27.





z − z





=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một đường tròn.
B. Một đường thẳng.
C. Một Parabol.
D. Một Elip.
Trang 2/4 Mã đề 001


Câu 29. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.

A. 0.
B. −1.
C. 1.
D. 2.
Câu 30. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 2π.
D. 4π.
Câu 31. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
2
2
C. (x + 1) + (y − 2) = 125.
D. x = 2.




×