Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (661)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.48 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. 2.

(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
1008
B. 2 .
C. 1.
D. 0.
2017

Câu 2.
√ Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là

A. 130.
B. 3 10.
C. 10 3.
D. 2 30.
Câu 3. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.


C. Mô-đun của số phức z là số phức.

B. Mô-đun của số phức z là số thực.
D. Mô-đun của số phức z là số thực không âm.

Câu 4. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là −3 và phần ảo là−2.
B. Phần thực là−3 và phần ảo là −2i.
C. Phần thực là3 và phần ảo là 2.
D. Phần thực là 3 và phần ảo là 2i.
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = 7 − 3i.
C. w = 3 + 7i.
D. w = −3 − 3i.
4(−3 + i) (3 − i)2
Câu 6. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i

√1 − 2i


A. |w| = 85.
B. |w| = 4 5.
C. |w| = 48.
D. |w| = 6 3.
R4
R4

R4
Câu 7. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. −1.
B. 1.
C. 5.
D. 6.
Câu 8. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 30◦ .
B. 60◦ .
C. 45◦ .
D. 90◦ .
. Gọi A và B là hai điểm thuộc
Câu 9. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường√
trịn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt √
phẳng (S AB) bằng
5
24
A. 8 2.
B. 24 .
C. 5 .
D. 4 2.
Câu 10. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d = R.
B. d > R.
C. d < R.
D. d = 0.
Câu 11. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:





A. →
n1 = (−1; 1; 1).
B. →
n3 = (1; 1; 1).
C. →
n2 = (1; −1; 1).
D. →
n4 = (1; 1; −1).
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 3.
B. 2.
C. 5.
D. 4.
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. 2.
C. 1.
D. -3.
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

A. P = 5.
B. P = 2 5.

C. P = 5.
D. P = 13.
Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 + i.
B. z = 3 − i.
C. z = 3 + i.

D. z = −3 − i.
Trang 1/4 Mã đề 001


Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −8.
C. 8.
D. −12.
Câu 17. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của số phức w = m2 − 3m + i√bằng bao nhiêu ?

B. |w| = 5.
C. |w| = 3 5.
D. |w| = 73.
A. |w| = 5.
Câu 18. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (5 − 2i)z + 9 − 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
2
C. z − (1 + 4i)z + 9 − 7i = 0.
D. z2 + (5 − 2i)z − 9 + 7i = 0.

Câu 19. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. π.
C. 4π.
D. 3π.

Câu 20. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
1
3
A. ≤ |z| ≤ 2.
B. |z| < .
C. < |z| < .
D. |z| > 2.
2
2
2
2





z − z






=2?
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho


z − 2i

A. Một Elip.
B. Một đường thẳng.
C. Một Parabol.
D. Một đường tròn.

Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 33.
B. |z| = 50.
C. |z| = 5 2.
D. |z| = 10.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác nhọn.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm

biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
B. w = 1 +
27
hoặcw
=
1

A. w = 1√+ 27i hoặcw =√1 − 27i.

√ 27.
D. w = − 27 − i hoặcw = − 27 + i.
C. w = 27 − i hoặcw = 27 + i.

Câu 25. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 4.
D. max |z| = 3.
Câu 26. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2

2
1
1
2
4
A. √ .
B. .
C. √ .
D. √ .
2
13
2
5
Câu 27. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 5 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 28. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 1)2 + (y − 4)2 = 125.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x + 1)2 + (y − 2)2 = 125.
Câu 29. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng



A. 5π.
B.
.
C. 25π.
D. .
4
2
Trang 2/4 Mã đề 001


Câu 30. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.
C. 4π.
D. π.
Câu 31. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 10 và 4.
B. 4 và 3.
C. 5 và 4.
D. 5 và 3.
z+i+1
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Elip.
C. Một đường trịn.

D. Một Parabol.

2
và điểm A trong hình vẽ bên là điểm
Câu 33. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm Q.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz

B. điểm M.

C. điểm N.

D. điểm P.

2 2
Câu 34. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
8
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3√


2 2
.
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
3
Câu 35. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của√biểu thức T = |z + 1| + 2|z − 1|
A. P = −2016.
B. P = 2016.
C. max T = 2 5.
D. P = 1.
1
2
=
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
z1 z2









1
z1
z2
. Tính giá trị biểu thức P =





×