Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (525)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.97 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Tính
√ mô-đun của số phức z thỏa mãn z(2 − i) + 13i =√1.

5 34
34
A. |z| =
.
B. |z| = 34.
C. |z| =
.
D. |z| = 34.
3
3
Câu 2. Cho số phức z thỏa mãn√z(1 + 3i) = 17 + i. Khi√đó mơ-đun của số phức w = 6z − 25i là
C. 29.
D. 13.
A. 5.
B. 2 5.
2
4(−3 + i) (3 − i)
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 3. Cho số phức z thỏa mãn z =


−i


√1 − 2i

B. |w| = 6 3.
C. |w| = 48.
D. |w| = 85.
A. |w| = 4 5.





z2




Câu 4. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức

z1 +


z1


B. 5.
C. 13.
D. 5.

A. 11.
Câu 5. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 3.
C. 1.

D. 4.

Câu 6. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 2k.
C. A = 1.
D. A = 2ki.
Câu 7. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 23 .
B. y = − 31 .

2x+1
3x−1

là đường thẳng có phương trình:
C. y = 32 .
D. y = 13 .

Câu 8. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng

B. 14 .
C. 25 .
D. 12 .
A. 34 .
Câu 9. Cho khối chóp S .ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 4.
B. 6.
C. 12.
D. 2.
Câu 10. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
C. 41 .
D. 72 .
A. 3.
B. 12 .
Câu 11. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n1 = (−1; 1; 1).
D. →
n2 = (1; −1; 1).
Câu 12. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. (3; +∞).
B. (−∞; 1).
C. (0; 2).

D. (1; 3).

Câu 13. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. −2.
C. 1.
D. 2.
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

A. P = 5.
B. P = 2 5.
C. P = 13.
D. P = 5.
Trang 1/4 Mã đề 001


Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (5 − 2i)z + 9 − 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
C. z2 − (1 + 4i)z + 9 − 7i = 0.
D. z2 + (5 − 2i)z − 9 + 7i = 0.
Câu 16. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?

−b
A. Phương trình đã cho có tổng hai nghiệm bằng
.
a
B. Phương trình đã cho ln có nghiệm.
C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 17. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 12.
B. −8.
C. 8.
D. −12.
Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 19. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 3π.
C. 2π.
D. 4π.

Câu 20. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 7.

C. max |z| = 4.
D. max |z| = 6.
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 8 = 0.
C. x − y + 4 = 0.
D. x + y − 5 = 0.
Câu 22. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x − 1)2 + (y − 4)2 = 125.
D. (x + 1)2 + (y − 2)2 = 125.
Câu 23. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 1.
D. 2.
Câu 24. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Một đường thẳng.
C. Parabol.
D. Hai đường thẳng.
Câu 25. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .

B.
.
C. 5π.
D. 25π.
4
2
Câu 26. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
4
2
1
B. √ .
C. √ .
D. √ .
A. .
2
13
5
2

Câu 27. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?

1
1
3
3
A. |z| < .
B. |z| > 2.
C. < |z| < .
D. ≤ |z| ≤ 2.
2
2
2
2
Trang 2/4 Mã đề 001


Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
27
hoặcw
=
1

27.
B.
w
=
1

+
27i
hoặcw
=
1

27i.
A. w = 1 +




C. w = − 27 − i hoặcw = − 27 + i.
D. w = 27 − i hoặcw = 27 + i.
Câu 29. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 3π.
C. 4π.
D. 2π.
1+i
z
Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .

B. S = .
C. S = .
D. S = .
4
4
2
2
z
Câu 31. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác vuông.
Câu 32. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B.
.
C. 5π.
D. 25π.
A. .
2
4
Câu 33. (Chun KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất√của biểu thức P = |z1 | + |z2 |. √



B. P = 5 + 3 5.
C. P = 34 + 3 2.
D. P = 2 26.
A. P = 4 6.

1
3
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
Câu 34. Cho a, b, c là các số thực và z = − +
2
2
A. a + b + c.
B. a2 + b2 + c2 − ab − bc − ca.
2
2
2
C. a + b + c + ab + bc + ca.
D. 0.
z+1
là số thuần ảo. Tìm |z| ?
Câu 35. Cho số phức z , 1 thỏa mãn
z−1
1
A. |z| = .
B. |z| = 1.
C. |z| = 2.
D. |z| = 4.
2
Câu 36. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.




B. 10.
C. 15.
D. 2 5.
A. 5.
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
bằng?
thức
1 + |z|2

1
1
2
A. .
B. .
C.
.
D. 2.
5
2
3
Câu 38. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
3

1
A. |w|min = .
B. |w|min = 2.
C. |w|min = .
D. |w|min = 1.
2
2
Câu 39. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
B. Đồ thị hàm số khơng có tiệm cận.
C. Điểm cực tiểu của hàm số là (0; 1).
D. Đồ thị hàm số có một điểm cực đại.
Câu 40. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực đại của hàm số là 0.
B. Hàm số có một điểm cực đại và một điểm cực tiểu.
Trang 3/4 Mã đề 001


C. Hàm số có hai điểm cực trị.
D. Giá trị cực tiểu của hàm số là 3.
Câu 41. Cho hàm số y =
điểm của (C) và d.
A. 0.

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
B. 2.

C. 3.


D. 1.

Câu 42. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A. y = −x3 − 2x + 3.

B. y = x4 − 2x2 + 1.

C. y = −x2 + 3x + 5.

D. y =

x−3
.
5−x

Câu 43. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?

x

−∞

+∞

1
+

y′

+

+∞

2

y
2

A. y =

2x + 1
.
x−1

B. y =

2x + 3
.
x−1

−∞

C. y =

2x − 1
.
x+1

D. y =

Câu 44. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là

A. x = 1.
B. x = 0.
C. (1; 2).
Câu 45. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
=
2
−1
A. Q(1; 2; −3).
B. M(2; −1; −2).
C. P(1; 2; 3).
Câu 46. Phần ảo của số phức z = 2 − 3i là
A. −3.
B. 3.

C. 2.

2x − 3
.
x−1

D. (0; 3).
z+3
.
−2

Điểm nào dưới đây thuộc d?
D. N(2; 1; 2).

D. −2.


Câu 47. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
A. 35
.
B. 354 .
C. 359 .
D. 71 .
Câu 48. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; 2; 3).
B. (1; 2; −3).
C. (−1; −2; −3).
D. (1; −2; 3).
Câu 49. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16π
.
C. 16
.
D. 169 .
15
9
15
Câu 50. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới đây đúng?
R

R
2
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Trang 4/4 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 001



×