Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001
!2016
Câu 1. Số phức z =
A. 2.
1+i
1−i
+
1−i
1+i
B. −2.
!2018
bằng
C. 0.
D. 1 + i.
Câu 2. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 0.
C. 2.
D. 3.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 3. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z là số thuần ảo.
B. z = .
C. |z| = 4.
D. z = z.
z
(1 + i)(2 − i)
là
Câu 4. Mô-đun của số phức z =
√ 1 + 3i
√
A. |z| = 1.
B. |z| = 2.
C. |z| = 5.
D. |z| = 5.
Câu 5. Số phức z =
A. 3.
4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. -1.
C. 2.
D. 1.
Câu 6. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤
A. m ≥ 1 hoặc m ≤ 0. B. −1 ≤ m ≤ 0.
C. m ≥ 0 hoặc m ≤ −1. D. 0 ≤ m ≤ 1.
Câu 7. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 4.
B. 85.
C. 36.
√
5 là
D. −77.
Câu 8. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −2.
B. −3.
C. e13 .
D.
1
.
e2
Câu 9. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 5.
B. 11.
C. 12.
D. 6.
Câu 10. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. (−∞; 1).
C. [1; +∞).
D. (1; +∞).
Câu 11. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n1 = (−1; 1; 1).
B. →
n3 = (1; 1; 1).
C. →
n2 = (1; −1; 1).
D. →
n4 = (1; 1; −1).
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
ngun của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 3.
B. 4.
C. 2.
D. 5.
Câu 13. Căn bậc hai của -4 trong tập số phức là.
A. 2 hoặc -2.
B. 4i.
C. 2i hoặc -2i.
D. không tồn tại.
Câu 14. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 2 2.
C. |w| = 3.
D. |w| = 2.
A. |w| = 5.
Trang 1/4 Mã đề 001
Câu 15. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. −2.
C. 1.
D. 2.
Câu 16. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√ Khi đó, mơ-đun của số phức w = m − 3m +√i bằng bao nhiêu ?
√
A. |w| = 3 5.
B. |w| = 5.
C. |w| = 73.
D. |w| = 5.
Câu 17. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
C. z2 − (1 + 4i)z + 9 − 7i = 0.
D. z2 − (5 − 2i)z + 9 − 7i = 0.
Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
7
3
B. − .
C. .
D. .
A. − .
4
4
4
4
√
Câu 19. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 7.
C. max |z| = 3.
D. max |z| = 6.
Câu 20. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. 2.
C. −1.
D. 0.
√
Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
1
3
A. ≤ |z| ≤ 2.
B. |z| < .
C. < |z| < .
D. |z| > 2.
2
2
2
2
Câu 22. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 3π.
C. 4π.
D. π.
Câu 23. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường tròn.
C. Một đường thẳng.
D. Parabol.
Câu 24. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
A. .
B. √ .
C. √ .
D. √ .
2
13
5
2
−2 − 3i
Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 3.
√
Câu 26. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 7.
D. max |z| = 4.
Câu 27. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x + y − 5 = 0.
C. x − y + 4 = 0.
D. x − y + 8 = 0.
Câu 28. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
A. P =
.
B. P = 3.
C. P = 2.
D. P =
.
2
2
Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 2π.
D. 4π.
Trang 2/4 Mã đề 001
Câu 30. Biết số phức z thỏa mãn |z − 3 − 4i| =
Tính |z|. √
√
A. |z| = 5 2.
B. |z| = 10.
√
5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
√
33.
√
Câu 31. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. < |z| < .
B. |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1 +
B. w = 1√+ 27 hoặcw = √
1 − 27.
√ 27i hoặcw = 1 −√ 27i.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 27 − i hoặcw = 27 + i.
2
1
Câu 33. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2