Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001
z2
Câu 1. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 13.
B. 5.
C. 11.
D. 5.
Câu 2. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = 3 − i.
B. z = 3 + i.
C. z = −3 + i.
D. z = −3 − i.
(1 + i)(2 − i)
Câu 3. Mô-đun của số phức z =
là
1 + 3i
√
√
A. |z| = 5.
B. |z| = 1.
C. |z| = 5.
D. |z| = 2.
2(1 + 2i)
Câu 4. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 3.
B. 13.
C. 5.
D. 4.
Câu 5. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. 0 và 1.
B. C.Truehỉ có số 0.
C. Chỉ có số 1.
D. Khơng có số nào.
Câu 6.√Cho số phức z1 = 3 + √
2i, z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là
√
B. 130.
C. 2 30.
D. 10 3.
A. 3 10.
R
Câu 7. Cho 1x dx = F(x) + C. Khẳng định nào dưới đây đúng?
C. F ′ (x) = x22 .
A. F ′ (x) = ln x.
B. F ′ (x) = 1x .
D. F ′ (x) = − x12 .
Câu 8. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 12 . Giá trị của u3 bằng
A. 41 .
B. 12 .
C. 3.
D. 27 .
Câu 9. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
B. 17 .
C. 35
.
D. 354 .
A. 359 .
Câu 10. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 45◦ .
B. 90◦ .
C. 30◦ .
D. 60◦ .
Câu 11. Tiệm cận ngang của đồ thị hàm số y =
A. y = − 23 .
B. y = 23 .
2x+1
3x−1
là đường thẳng có phương trình:
C. y = − 31 .
D. y = 13 .
Câu 12. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 2.
B. 3.
C. 4.
D. 1.
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Câu 14. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 8.
B. −12.
C. 12.
D. −8.
Câu 15. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. -3.
C. -1.
D. 2.
Trang 1/4 Mã đề 001
Câu 16. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?
√
√
D. P = 2 5.
A. P = 5.
B. P = 13.
C. P = 5.
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 4i.
C. 2i hoặc -2i.
D. 2 hoặc -2.
Câu 18. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
3
1
B. .
C. .
D. − .
A. − .
2
2
2
2
1+i
Câu 19. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
15
B. S = .
C. S = .
D. S = .
A. S = .
4
2
4
2
√
2
2
Câu 20. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2| − |z − i| đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 5 2.
C. |z| = 50.
D. |z| = 33.
z
Câu 21. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác cân.
Câu 22. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
2
2
C. (x − 1) + (y − 4) = 125.
D. x = 2.
Câu 23. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. π.
D. 3π.
z+i+1
là số thuần ảo?
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.
C. Một Elip.
D. Một đường tròn.
z−z
=2?
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.