Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (877)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.15 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −10.
C. 9.
D. −9.
Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 2k.
C. A = 0.
D. A = 1.
Câu 3. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = 3 + 7i.
C. w = −7 − 7i.

D. w = 7 − 3i.

Câu 4. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 2i.
B. P = 1 + i.
C. P = 1.
D. P = 0.








z2
Câu 5. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức


z1 +



z1


A. 13.
B. 5.
C. 11.
D. 5.
Câu 6. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 . D. (1 + i)2018 = −21009 i.
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 7. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (0; −2).
B. (−2; 0).

C. (0; 2).
D. (2; 0).
Câu 8. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).
B. (−1; 2).
C. (1; 2).
D. (1; 0).
Câu 9. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn






log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 48.

B. 89.

C. 90.

D. 49.

Câu 10. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16
.

C. 16π
.
D. 169 .
9
15
15
2

−16
Câu 11. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 186.
B. 193.
C. 184.

x2 −16
?
27

D. 92.

Câu 12. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 41 .
B. 43 .
C. 25 .
D. 12 .
Câu 13. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.



A. T = 4 + 2 3.
B. T = 2 3.
C. T = 4.
D. T = 2 + 2 3.
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m < 0 hoặc m > . B. m ≥ 0.
C. 0 ≤ m < .
D. 0 < m < .
4
4
4
Trang 1/4 Mã đề 001


Câu 15. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M4 (6; −14).
C. M2 (2; −10).
D. M1 (6; 14).
Câu 16. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. -3.

C. 1.
D. 2.
Câu 17. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mô-đun của số phức w = z + 1 bằng bao
nhiêu ?.




B. |w| = 3.
C. |w| = 2.
D. |w| = 5.
A. |w| = 2 2.
Câu 18. Căn bậc hai của -4 trong tập số phức là.
A. 2i hoặc -2i.
B. 2 hoặc -2.
C. 4i.

D. không tồn tại.

Câu 19. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.

Câu 20. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 7.
C. max |z| = 4.

D. max |z| = 6.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
B. P =
.
C. P = 3.
D. P =
.
A. P = 2.
2
2





z − z





=2?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một Elip.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Parabol.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 +
27i
hoặcw
=
1

27i.
B.
w
=
27

i
hoặcw
=
27 √

+ i.



C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. −1.
D. 2.
Câu 25. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
C. x = 2.
D. (x + 1)2 + (y − 2)2 = 125.
Câu 26. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 3.
B. P = 2.
C. P =
.

D. P =
.
2
2
Câu 27. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.

Câu 28. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. |z| > 2.
C. < |z| < .
D. |z| < .
2
2
2
2
Trang 2/4 Mã đề 001







×