Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (884)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.7 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Cho hai số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .

A. |z1 + z2 | = 5.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 13.
Câu 2. Số phức z =
A. 2.

(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
1008
B. 2 .
C. 1.
D. 0.

Câu 3. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 2i.
B. P = 1.
C. P = 1 + i.


D. P = 0.

Câu 4. Tính mơ-đun của số phức z√thỏa mãn z(2 − i) + 13i = 1.

34
A. |z| = 34.
B. |z| =
.
C. |z| = 34.
3


5 34
D. |z| =
.
3

Câu 5. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 3.
B. 4.
C. 2.
(1 + i)(2 − i)

Câu 6. Mô-đun của số phức z =

√ 1 + 3i

C. |z| = 5.
A. |z| = 5.
B. |z| = 2.
Câu 7. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. [1; +∞).
C. (−∞; 1).

D. 1.

D. |z| = 1.
D. (1; +∞).

Câu 8. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n1 = (−1; 1; 1).
B. →
n2 = (1; −1; 1).
C. →
n3 = (1; 1; 1).
D. →
n4 = (1; 1; −1).
Câu 9. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng định
nào dưới đây đúng?
A. d < R.
B. d = 0.

C. d = R.
D. d > R.




Câu 10. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 5.
B. 12.

C. 6.

D. 11.

. Gọi A và B là hai điểm thuộc
Câu 11. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường trịn đáy sao cho AB = 12,
√ khoảng cách từ tâm của√đường tròn đáy đến mặt5 phẳng (S AB) bằng
24
A. 5 .
B. 8 2.
C. 4 2.
D. 24 .
Câu 12. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng

A. e12 .
B. −2.
C. e13 .
D. −3.
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. −12.
C. 12.
D. 8.
Câu 14. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 − i và −4 + i.
C. 4 + i và −4 + i.

D. 4 − i và 2 + 3i.
Trang 1/4 Mã đề 001


Câu 15. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?


A. MN = 10.
B. MN = 5.
C. MN = 2 5.
D. MN = 10.
Câu 16. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =

√ z + 2z bằng bao nhiêu?√

A. |w| = 13.
B. |w| = 37.
C. |w| = 5 13.
D. |w| = 5.
Câu 17. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
3
7
7
B. .
C. − .
D. .
A. − .
4
4
4
4
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T = 3.
B. T =
.
C. T = 9.
D. T = .

2
4






z−z


=2?
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường thẳng.
B. Một Elip.
C. Một Parabol.
D. Một đường tròn.

Câu 20. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 6.
C. max |z| = 7.
D. max |z| = 3.







−2 − 3i


z + 1


×