Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (735)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.03 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001

Câu 1. Phần thực của số phức z = 1 + (1 + i) + (1 + i) + · · · + (1 + i)
A. −21008 .
B. −22016 .
C. −21008 + 1.
2

2016


D. 21008 .

Câu 2. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 + 2i.

D. −3 − 2i.

Câu 3. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 2i.
B. P = 0.
C. P = 1.


D. P = 1 + i.

Câu 4. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
B. |z2 | = |z|2 .
C. z · z = a2 − b2 .
D. z − z = 2a.
A. z + z = 2bi.
Câu 5. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực.
C. Mô-đun của số phức z là số thực dương.

B. Mô-đun của số phức z là số phức.
D. Mô-đun của số phức z là số thực không âm.

4(−3 + i) (3 − i)2
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 6. Cho số phức z thỏa mãn z =
−i
√1 − 2i



A. |w| = 48.
B. |w| = 4 5.
C. |w| = 85.
D. |w| = 6 3.
Câu 7. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).

B. (−1; 2).
C. (1; 0).
D. (1; 2).
Câu 8. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. [1; +∞).
B. (1; +∞).
C. (−∞; 1).

D. (−∞; 1].

Câu 9. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
C. y′ = πxπ .
A. y′ = xπ−1 .
B. y′ = π1 xπ−1 .

D. y′ = πxπ−1 .

Câu 10. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
A. 71 .
B. 354 .
C. 35
.
D. 359 .
Câu 11. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:





A. →
n1 = (−1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n3 = (1; 1; 1).
D. →
n2 = (1; −1; 1).
Câu 12. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−2; −4; −6).
B. (−1; −2; −3).
C. (1; 2; 3).
D. (2; 4; 6).
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -3.
B. 1.
C. 2.
D. -1.
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 ≤ m < .
C. m < 0 hoặc m > . D. 0 < m < .
4

4
4
3
2
Câu 15. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z −z +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?


A. P = 13.
B. P = 5.
C. P = 5.
D. P = 2 5.
Trang 1/4 Mã đề 001


Câu 16. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 17. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (5 − 2i)z + 9 − 7i = 0.
B. z2 − (1 + 4i)z + 9 − 7i = 0.
C. z2 + (5 − 2i)z − 9 + 7i = 0.
D. z2 + (1 + 4i)z − 9 + 7i = 0.
Câu 18. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
c
B. Phương trình đã cho có tích hai nghiệm bằng .

a
−b
C. Phương trình đã cho có tổng hai nghiệm bằng
.
a
D. Phương trình đã cho ln có nghiệm.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường trịn.
D. Một Parabol.

Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Elip.

B. Một đường thẳng.

Câu 20. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =

1+i
z
2

trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
B. S = .
C. S = .

D. S = .
A. S = .
4
4
2
2
Câu 21. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 2.
D. 0.
Câu 22. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. x = 2.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 2π.

C. π.
D. 4π.
Câu 25. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 5.
B. max T = 2 10.
C. max T = 3 5.
D. max T = 3 2.
Câu 26. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 3π.
C. 4π.
D. 2π.
Câu 27. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 4.
C. r = 20.
D. r = 5.
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức
√ w = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là

A. w = √
27 − i hoặcw = 27√+ i.
B. w = 1 + √27i hoặcw = 1 − √ 27i.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Trang 2/4 Mã đề 001


Câu 29. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
A. .
B. √ .
D. √ .
C. √ .
2
13
5
2
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là

một hình trịn có diện tích bằng


A. 5π.
B.
.
C. .
D. 25π.
2
4
z+i+1
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Parabol.
C. Một Elip.
D. Một đường thẳng.
Câu 32. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 5.
B. max T = 3 5.
C. max T = 3 2.
D. max T = 2 10.
Câu 33. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 1 + i.

B. A = −1.
C. A = 1.
D. A = 0.
Câu 34. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.



B. 5.
C. 2 5.
D. 10.
A. 15.
Câu 35. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 0.
B. P = 2016.
C. P = 1.
D. P = −2016.

2
và điểm A trong hình vẽ bên là điểm
Câu 36. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
2
biểu diễn z.

Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm P.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz

B. điểm N.

D. điểm M.

2 2
Câu 37. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
8
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3√

2
2
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3




√ 
2 42 √
Câu 38. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
3
1
5
A. < |z| < 3.
B. 3 < |z| < 5.
C. < |z| < 2.
D. < |z| < 4.
2
2
2
Câu 39. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

C. điểm Q.

−∞

+∞

1
+

y′


+
+∞

2

y
2

−∞
Trang 3/4 Mã đề 001


A. y =

2x + 3
.
x−1

B. y =

2x + 1
.
x−1

C. y =

2x − 3
.
x−1


D. y =

2x − 1
.
x+1

Câu 40. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. −35.

B. 1.

C. 17.

D. −10.

Câu 41. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 0.

B. 2.

C. 3.

D. 1.

2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên tập xác định của nó. B. Hàm số đồng biến trên khoảng (−2; +∞).

Câu 42. Cho hàm số y =


C. Hàm số đồng biến trên khoảng (−2; 2).

D. Hàm số đồng biến trên khoảng (2; +∞).

Câu 43. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 3a3 .

B. V = a3 .

C. V = 6a3 .

Câu 44. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
.
C. y = x4 − 2x2 + 1.
A. y = −x3 − 2x + 3.
B. y =
5−x

D. V = 12a3 .

D. y = −x2 + 3x + 5.

Câu 45. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 32 .


C. 43 .

B. 3.

D. 6.

Câu 46. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A.

4
.
35

B.

9
.
35

C. 71 .

D.

18
.
35

Câu 47. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị

nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
Câu 48. Cho

B. 3.
R

A. F ′ (x) = 1x .

1
x

C. 5.

D. 2.

dx = F(x) + C. Khẳng định nào dưới đây đúng?
B. F ′ (x) =

2
.
x2

C. F ′ (x) = − x12 .

D. F ′ (x) = ln x.

Câu 49. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
=
2

phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 31 .

B.

11
.
3

C. 1.

y−1
2

=

z−1
.
−3

Gọi (P) là mặt

D. 5.

Câu 50. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 30.

B. 210.

C. 105.


D. 225.
Trang 4/4 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 001



×