Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (835)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.43 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề thi 001001

Câu 1. Cho số phức z thỏa (1 − 2i)z + (1 + 3i) = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. M(2; −3).
B. N(2; 3).
C. P(−2; 3).
D. Q(−2; −3).
2

Câu 2. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số thực.

B. Mô-đun của số phức z là số thực không âm.
D. Mô-đun của số phức z là số phức.

Câu 3. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z · z = a2 − b2 .
B. z − z = 2a.
C. |z2 | = |z|2 .
D. z + z = 2bi.
Câu 4. Với mọi số phức z, ta có |z + 1|2 bằng
A. z · z + z + z + 1.
B. |z|2 + 2|z| + 1.
Câu 5. Số phức z =


A. 2.

C. z + z + 1.

D. z2 + 2z + 1.

(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
1008
B. 2 .
C. 1.
D. 0.

Câu 6. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 10i.
C. 11 + 2i.

D. −3 − 2i.

Câu 7. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
16
A. 15
.
B. 169 .
C. 16π
.
D. 16π

.
9
15
Câu 8. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 85.
B. −77.
C. 36.
R4
R4
R4
Câu 9. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 1.
B. −1.
C. 6.
Câu 10. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (2; 3).
B. (−∞; 3).
C. (12; +∞).
i
R2
R 2 h1
Câu 11. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. 8.
B. 6.
C. 0.

D. 4.
D. 5.
D. (3; +∞).
D. −2.


Câu 12. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vng cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




B. 22 a3 .
A. 2a3 .
C. 42 a3 ..
D. 62 a3 .
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 4 − i và −4 + i.
C. 5 − 2i và −5 + 2i.

D. 4 − i và 2 + 3i.

Câu 14. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T = .
B. T = 3.
C. T = 9.
D. T =
.
4
2

Câu 15. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 − i.
B. z = 3 − i.
C. z = −3 + i.
D. z = 3 + i.
Câu 16. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?

A. P = 5.
B. P = 13.
C. P = 2 5.
D. P = 5.
Trang 1/4 Mã đề 001001


Câu 17. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của số phức w = m2 − 3m +√i bằng bao nhiêu ?

B. |w| = 5.
C. |w| = 73.
D. |w| = 3 5.
A. |w| = 5.
Câu 18. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
7
3
3
A. .

B. − .
C. .
D. − .
4
4
4
4
Câu 19. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. π.
C. 4π.
D. 2π.
Câu 20. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 5 và 4.
C. 10 và 4.
D. 4 và 3.






−2 − 3i


Câu 21. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện



z + 1


= 1.
√ 3 − 2i
A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 1.

Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 50.
C. |z| = 33.
D. |z| = 10.

Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 4.
D. max |z| = 3.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 0.

D. 2.
1+i
z
Câu 25. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
A. S = .
B. S = .
C. S = .
D. S = .
2
4
2
4
z
Câu 26. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 27. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 4π.

C. 2π.
D. 3π.
Câu 28. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x + y − 8 = 0.
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Một đường thẳng.
C. Đường trịn.
D. Parabol.

Câu 30. (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
A. |z| > 2.
B. |z| < .
C. < |z| < .
D. ≤ |z| ≤ 2.
2
2
2
2
Câu 31. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng



A. .
B. 25π.
C. 5π.
D. .
2
4
Trang 2/4 Mã đề 001001


z+i+1
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
z
Câu 33. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức M = |z + 1 − i| là √

C. 2.
D. 2 2.
A. 8.
B. 2.
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =


Câu 34. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
A. |w|min = 1.
B. |w|min = .
C. |w|min = .
D. |w|min = 2.
2
2
Câu 35. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?

2

2
A. P = |z|2 − 4 .
B. P = (|z| − 4)2 .
C. P = |z|2 − 2 .
D. P = (|z| − 2)2 .
Câu 36. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 4.
B. 18.
C. 8.
D. 9.
Câu 37. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
A. .
B. 1.

C. .
2
2

D. 2.

Câu 38. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
Khi đó mệnh đề nào sau đây đúng?
3
5
5
7
A. < |z| < 2.
B. 2 < |z| < .
C. < |z| < .
2
2
2
2
Câu 39. Cho hàm số y = f (x) có bảng biến thiên như sau:
x

−∞

y′

1
3
< |z| < .
2

2

+∞

−2


D.

1 + z + z2
là số thực.
1 − z + z2


+∞

−2
y
−∞

−2

Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 4.
B. 3.
C. 2.
D. 1.
Câu 40. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y = −x3 − 2x + 3.

B. y = −x2 + 3x + 5.
C. y =
.
5−x
Câu 41. Trong các hình dưới đây, có bao nhiêu hình đa diện?

Hình 1

A. 3.

B. 0.

D. y = x4 − 2x2 + 1.

Hình 3

Hình 2

C. 1.

D. 2.

Câu 42. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối mười hai mặt đều.
B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Trang 3/4 Mã đề 001001



Câu 43. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 12.

B. 18.

C. 15.

D. 21.

Câu 44. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 17.

B. 1.

C. −35.

D. −10.

Câu 45. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 210.

B. 105.

C. 30.

D. 225.

Câu 46. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng

A. 4.

B. 8.

C. 83 .

D. 6.

Câu 47. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (2; 4; 6).

B. (−1; −2; −3).

C. (−2; −4; −6).

D. (1; 2; 3).

Câu 48. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = π1 xπ−1 .

B. y′ = πxπ−1 .

C. y′ = πxπ .

D. y′ = xπ−1 .

Câu 49. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 2πrl.


B. 32 πrl2 .

C. 31 πr2 l.

D. πrl.

Câu 50. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (−∞; 1).

B. (2; +∞).

C. (1; 2).

D. (1; +∞).
Trang 4/4 Mã đề 001001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/4 Mã đề 001001



×