Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −9.
C. −10.
D. 9.
Câu 2.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w√= 6z − 25i là
B. 5.
C. 13.
D. 2 5.
A. 29.
25
1
1
Câu 3. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 31.
B. −31.
C. −17.
D. 17.
Câu 4. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 i. B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 i.
D. (1 + i)2018 = 21009 .
Câu 5. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. N(2; 3).
B. Q(−2; −3).
C. M(2; −3).
D. P(−2; 3).
Câu 6. Tính mơ-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.
√
√
5 34
34
A. |z| = 34.
B. |z| = 34.
C. |z| =
.
D. |z| =
.
3
3
Câu 7. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n4 = (1; 1; −1).
B. →
n2 = (1; −1; 1).
C. →
n1 = (−1; 1; 1).
D. →
n3 = (1; 1; 1).
Câu 8. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 4.
C. 2.
D. 3.
Câu 9. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 13 πr2 l.
B. 23 πrl2 .
C. πrl.
D. 2πrl.
Câu 10. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
A. 35
.
B. 354 .
C. 71 .
D. 359 .
Câu 11. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
A. 5.
B. 12.
C. 6.
D. 11.
Câu 12. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 21 .
B. 14 .
C. 34 .
D. 52 .
Câu 13. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M1 (6; 14).
C. M4 (6; −14).
D. M2 (2; −10).
Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 1.
B. 2.
C. -1.
D. -3.
Trang 1/5 Mã đề 001
Câu 15. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
1
3
3
B. − .
C. .
D. − .
A. .
2
2
2
2
Câu 16. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 + i và −4 + i.
C. 4 − i và −4 + i.
D. 5 − 2i và −5 + 2i.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√
√
A. |w| = 37.
B. |w| = 5 13.
C. |w| = 13.
D. |w| = 5.
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T = .
C. T =
.
D. T = 3.
4
2
Câu 19. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B. 5π.
C. .
D. .
4
2
z−z
=2?
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một đường thẳng.
C. Một Elip.
D. Một Parabol.
Câu 21. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường tròn.
C. Parabol.
D. Một đường thẳng.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
A. w = 1 + √27i hoặcw = 1 − √ 27i.
B. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 1 + 27 hoặcw = 1 − 27.
D. w = 27 − i hoặcw = 27 + i.
√
Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 7.
√
Câu 24. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3
1
A. |z| < .
B. < |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
2
2
2
2
√
Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.
√
√
√
A. |z| = 50.
B. |z| = 10.
C. |z| = 33.
D. |z| = 5 2.
Câu 26. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
A. S = .
B. S = .
C. S = .
2
4
4
D. S =
1+i
z
2
25
.
2
Câu 27. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 5 và 3.
C. 10 và 4.
D. 4 và 3.
Câu 28. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1 +
B. w = 1√+ 27i hoặcw =√1 − 27i.
√ 27 hoặcw = 1 −√ 27.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 27 − i hoặcw = 27 + i.
Trang 2/5 Mã đề 001
Câu 29. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. x = 2.
D. (x − 1)2 + (y − 4)2 = 125.
−2 − 3i
z + 1