Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −22016 .
B. −21008 + 1.
C. −21008 .
D. 21008 .
Câu 2.√Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là √
A. 3 10.
B. 2 30.
C. 10 3.
D. 130.
Câu 3. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = −3 − i.
B. z = 3 + i.
C. z = 3 − i.
D. z = −3 + i.
Câu 4. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 3 + 7i.
B. w = −3 − 3i.
C. w = 7 − 3i.
D. w = −7 − 7i.
Câu 5. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 . B. (1 + i)2018 = −21009 i. C. (1 + i)2018 = 21009 i. D. (1 + i)2018 = 21009 .
25
1
1
Câu 6. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 31.
B. 17.
C. −17.
D. −31.
R4
R4
R4
Câu 7. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. −1.
B. 6.
C. 1.
D. 5.
Câu 8. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (12; +∞).
B. (−∞; 3).
C. (3; +∞).
D. (2; 3).
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 2.
C. 3.
D. 4.
Câu 10. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng
A. 28.
B. 14.
√
C. 11 + 4 6.
√
D. 18 + 4 6.
Câu 11. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 12. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).
B. (0; 2).
C. (0; −2).
D. (−2; 0).
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 + i và −4 + i.
B. 4 − i và −4 + i.
C. 4 − i và 2 + 3i.
D. 5 − 2i và −5 + 2i.
Câu 14. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
B. P = 13.
C. P = 5.
D. P = 2 5.
A. P = 5.
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 2.
B. |w| = 5.
C. |w| = 3.
D. |w| = 2 2.
Câu 16. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M2 (2; −10).
C. M1 (6; 14).
D. M4 (6; −14).
Trang 1/5 Mã đề 001
Câu 17. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của √
số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 3 5.
C. |w| = 5.
D. |w| = 73.
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
B. T = 3.
C. T =
.
D. T = 9.
A. T = .
4
2
Câu 19. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 25π.
C. 5π.
D. .
2
4
Câu 20. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. π.
C. 2π.
D. 4π.
Câu 21. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. 1.
D. −1.
Câu 22. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 3.
B. 5 và 4.
C. 10 và 4.
D. 4 và 3.
z−z
=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Elip.
C. Một đường thẳng.
D. Một Parabol.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. x = 2.
C. (x − 1)2 + (y − 4)2 = 125.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 25. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường tròn.
C. Một đường thẳng.
D. Parabol.
Câu 26. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
B. P =
.
C. P = 2.
D. P =
.
A. P = 3.
2
2
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 4.
C. max |z| = 6.
D. max |z| = 3.
Câu 29. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 1)2 + (y − 4)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 30. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. √ .
B. √ .
C. .
D. √ .
2
13
2
5
Trang 2/5 Mã đề 001
√
Câu 31. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
B. |z| < .
C. |z| > 2.
D. < |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
2
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = 1√+ 27 hoặcw = √
1 − 27.
B. w = 1 +
√ 27i hoặcw = 1 −√ 27i.
C. w = 27 − i hoặcw = 27 + i.
D. w = − 27 − i hoặcw = − 27 + i.
z
Câu 33. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√
√ M = |z + 1 − i| là
B. 2.
C. 8.
D. 2.
A. 2 2.
Câu 34. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của biểu
√ thức P = |z1 | + |z
√2 |.
√
√
A. P = 34 + 3 2.
B. P = 4 6.
C. P = 5 + 3 5.
D. P = 2 26.
√
1
3
Câu 35. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a2 + b2 + c2 + ab + bc + ca.
B. a2 + b2 + c2 − ab − bc − ca.
C. a + b + c.
D. 0.
1
Câu 36. Cho số phức z thỏa mãn