Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 3 + 7i.
B. w = −3 − 3i.
C. w = −7 − 7i.
D. w = 7 − 3i.
Câu 2. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = −3 + i.
B. z = 3 + i.
C. z = −3 − i.
D. z = 3 − i.
Câu 3. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. −7.
C. 3.
D. −3.
4 + 2i + i2017
có tổng phần thực và phần ảo là
Câu 4. Số phức z =
2−i
A. 3.
B. 1.
C. 2.
D. -1.
(1 + i)(2 − i)
Câu 5. Mô-đun của số phức z =
là
√
√ 1 + 3i
A. |z| = 5.
B. |z| = 2.
C. |z| = 1.
D. |z| = 5.
4 − 2i (1 − i)(2 + i)
Câu 6. Phần thực của số phức z =
+
là
2−i
2 + 3i
29
29
11
11
B. − .
C. .
D. − .
A. .
13
13
13
13
Câu 7. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).
B. (0; −2).
C. (−2; 0).
D. (0; 2).
R4
R4
R4
Câu 8. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. −1.
C. 6.
D. 1.
Câu 9. Phần ảo của số phức z = 2 − 3i là
A. −2.
B. −3.
C. 2.
D. 3.
Câu 10. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; +∞).
C. (1; 2).
D. (−∞; 1).
Câu 11. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 36.
B. 4.
C. −77.
D. 85.
Câu 12. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (6; 7).
B. (2; 3).
C. (3; 4).
D. (4; 5).
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 5.
D. |w| = 3 5.
Câu 14. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
B. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Trang 1/5 Mã đề 001
C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
D. Phương trình đã cho ln có nghiệm.
Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (1 + 4i)z + 9 − 7i = 0.
B. z2 − (5 − 2i)z + 9 − 7i = 0.
2
C. z + (1 + 4i)z − 9 + 7i = 0.
D. z2 + (5 − 2i)z − 9 + 7i = 0.
Câu 16. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T =
.
B. T = .
C. T = 9.
D. T = 3.
2
4
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. 2i hoặc -2i.
B. 2 hoặc -2.
C. 4i.
D. không tồn tại.
Câu 18. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M4 (6; −14).
C. M2 (2; −10).
D. M1 (6; 14).
Câu 19. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 20. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2
1
4
1
A. √ .
B. √ .
C. √ .
D. .
2
13
5
2
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một đường thẳng.
B. Một đường tròn.
C. Một Elip.
z+i+1
là số thuần ảo?
z + z + 2i
D. Một Parabol.
Câu 22. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P =
.
C. P = 3.
A. P =
D. P = 2.
2
2
z − z
=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một Elip.
C. Một đường tròn.
D. Một đường thẳng.
Câu 24. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 5 = 0.
D. x + y − 8 = 0.
1+i
z
Câu 25. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
4
4
2
2
z+i+1
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một Elip.
C. Một đường thẳng.
D. Một đường tròn.
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 3π.
D. 4π.
Trang 2/5 Mã đề 001
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
1+i
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
15
25
25
A. S = .
B. S = .
C. S = .
D. S = .
4
2
4
2
Câu 29. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 25π.
C. .
D. 5π.
2
4
Câu 30. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 20.
B. r = 22.
C. r = 5.
D. r = 4.
Câu 31. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
2
3
.
C. P = 2.
.
A. P = 3.
B. P =
D. P =
2
2
Câu 32. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 4 và 3.
C. 5 và 3.
D. 5 và 4.
Câu 33. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 2016.
B. P = 0.
C. P = 1.
D. P = −2016.
2z − i
. Mệnh đề nào sau đây đúng?
Câu 34. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
2 + iz
A. |A| < 1.
B. |A| ≥ 1.
C. |A| > 1.
D. |A| ≤ 1.
√
√
√
2 42 √
Câu 35. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
5
3
1
A. 3 < |z| < 5.
B. < |z| < 4.
C. < |z| < 3.
D. < |z| < 2.
2
2
2
4
Câu 36. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu !diễn số phức thuộc tập hợp
nào
sau
đây?
!
!
!
1 5
1 9
9
1
A. ; .
B. ; .
C. ; +∞ .
D. 0; .
4 4
2 4
4
4
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?
1 + |z|2
√
2
1
1
A. .
B.
.
C. .
D. 2.
2
3
5
√
3
1
Câu 38. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a2 + b2 + c2 − ab − bc − ca.
B. a2 + b2 + c2 + ab + bc + ca.
C. a + b + c.
D. 0.
Câu 39. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Hình 1
Hình 2
Hình 3
Trang 3/5 Mã đề 001
A. 2.
B. 0.
C. 3.
D. 1.
C. 21.
D. 18.
Câu 40. Hình đa diện dưới đây có bao nhiêu cạnh?
A. 12.
B. 15.
Câu 41. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 0.
B. x = 1.
C. (1; 2).
D. (0; 3).
Câu 42. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Hàm số có hai điểm cực trị.
B. Giá trị cực tiểu của hàm số là 3.
C. Giá trị cực đại của hàm số là 0.
D. Hàm số có một điểm cực đại và một điểm cực tiểu.
Câu 43. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 1.
B. 17.
C. −10.
D. −35.
Câu 44. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
A. V = .
B. V = .
C. V = 1.
D. V = .
6
3
2
Câu 45. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (3; 4).
B. (4; 5).
C. (2; 3).
D. (6; 7).
Câu 46. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 47. Tiệm cận ngang của đồ thị hàm số y =
A. y = 32 .
B. y = − 13 .
2x+1
3x−1
là đường thẳng có phương trình:
C. y = − 32 .
D. y = 13 .
Câu 48. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 2).
B. (−1; 2).
C. (1; 0).
D. (0; 1).
Câu 49. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 34 .
B. 3.
C. 23 .
D. 6.
Câu 50. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
9
18
A. 35
.
B. 17 .
C. 354 .
D. 35
.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001