Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
(1 + i)(2 − i)
Câu 1. Mô-đun của số phức z =
là
1 + 3i
√
B. |z| = 5.
A. |z| = 5.
C. |z| = 1.
Câu 2. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = −21009 i. C. (1 + i)2018 = 21009 i.
Câu 3. Số phức z =
A. 2.
4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 1.
C. 3.
D. |z| =
√
2.
D. (1 + i)2018 = −21009 .
D. -1.
Câu 4. Cho hai√số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
√
A. |z1 + z2 | = 5.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 13.
Câu 5. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 0.
C. A = 2ki.
D. A = 1.
Câu 6. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z · z = a2 − b2 .
B. z − z = 2a.
C. |z2 | = |z|2 .
D. z + z = 2bi.
Câu 7. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 6.
B. 83 .
C. 4.
D. 8.
Câu 8. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = − x ln1 3 .
C. y′ = x ln1 3 .
A. y′ = 1x .
D. y′ =
ln 3
.
x
Câu 9. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. M(2; −1; −2).
B. N(2; 1; 2).
C. P(1; 2; 3).
D. Q(1; 2; −3).
Câu 10. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2√bằng
A. 14.
B. 18 + 4 6.
√
C. 11 + 4 6.
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ−1 .
B. y′ = xπ−1 .
C. y′ = π1 xπ−1 .
D. 28.
D. y′ = πxπ .
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 4.
B. 2.
C. 5.
D. 3.
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và −4 + i.
B. 4 + i và −4 + i.
C. 4 − i và 2 + 3i.
D. 5 − 2i và −5 + 2i.
Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -3.
B. 2.
C. 1.
D. -1.
Câu 15. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.
√
√
A. T = 4 + 2 3.
B. T = 2 + 2 3.
C. T = 2 3.
D. T = 4.
Câu 16. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?
√
A. MN = 2 5.
B. MN = 5.
C. MN = 10.
D. MN = 10.
Trang 1/5 Mã đề 001
Câu 17. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
7
3
B. .
C. .
D. − .
A. − .
4
4
4
4
Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
A. |w| = 3.
B. |w| = 2.
C. |w| = 5.
D. |w| = 2 2.
√
Câu 19. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3
1
A. |z| < .
B. < |z| < .
C. ≤ |z| ≤ 2.
D. |z| > 2.
2
2
2
2
Câu 20. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. 2.
C. −1.
D. 0.
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
Câu 22. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Hai đường thẳng.
C. Đường tròn.
D. Một đường thẳng.
Câu 23. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P = 2.
C. P =
.
D. P = 3.
A. P =
2
2
Câu 24. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 20.
C. r = 5.
D. r = 4.
√
Câu 25. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 3.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 6.
Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 10 và 4.
C. 4 và 3.
D. 5 và 3.
z−z
=2?
Câu 27. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Elip.
B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
Câu 28. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 3π.
C. 2π.
D. 4π.
−2 − 3i
Câu 29. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1