Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 3.
B. 4.
C. 2.
D. 1.
Câu 2. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. 0 và 1.
B. Khơng có số nào.
C. C.Truehỉ có số 0.
D. Chỉ có số 1.
Câu 3. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −3 − 3i.
B. w = 7 − 3i.
C. w = −7 − 7i.
!2016
!2018
1−i
1+i
+
bằng
Câu 4. Số phức z =
1−i
1+i
A. 2.
B. −2.
C. 1 + i.
D. 0.
Câu 5. Với mọi số phức z, ta có |z + 1|2 bằng
A. z · z + z + z + 1.
B. z2 + 2z + 1.
D. z + z + 1.
C. |z|2 + 2|z| + 1.
D. w = 3 + 7i.
Câu 6. Cho hai số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
Câu 7. Cho khối chóp S .ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 12.
B. 6.
C. 2.
D. 4.
Câu 8. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1].
B. (1; +∞).
C. [1; +∞).
D. (−∞; 1).
Câu 9. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 60◦ .
B. 30◦ .
C. 90◦ .
D. 45◦ .
Câu 10. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; −2; −3).
B. (1; 2; −3).
C. (1; −2; 3).
D. (−1; 2; 3).
Câu 11. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−1; −2; −3).
B. (−2; −4; −6).
C. (2; 4; 6).
D. (1; 2; 3).
Câu 12. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 90.
B. 49.
C. 89.
D. 48.
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm). Khi đó, mơ-đun của√số phức w = m2 − 3m + i√bằng bao nhiêu ?
√
A. |w| = 5.
B. |w| = 73.
C. |w| = 3 5.
D. |w| = 5.
Trang 1/5 Mã đề 001
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
B. m ≥ 0.
C. 0 < m < .
D. m < 0 hoặc m > .
A. 0 ≤ m < .
4
4
4
2
Câu 15. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T =
.
C. T = .
D. T = 3.
2
4
Câu 16. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −1.
B. −4.
C. 2.
D. 5.
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 37.
B. |w| = 5.
C. |w| = 5 13.
D. |w| = 13.
Câu 18. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 3.
C. |w| = 2.
D. |w| = 2 2.
A. |w| = 5.
Câu 19. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 3.
C. 5 và 4.
D. 4 và 3.
−2
−
3i
Câu 20. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 1.
D. max |z| = 2.
√
Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
B. < |z| < .
C. |z| > 2.
D. |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
Câu 22. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 3π.
C. 4π.
D. 2π.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 24. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x + 1)2 + (y − 2)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 25. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 +
27i
hoặcw
=
1
−
27i.
B.
w
=
27
−
i
hoặcw
=
27 √
+ i.
√
√
√
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
√
Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| < .
B. |z| > 2.
C. ≤ |z| ≤ 2.
D. < |z| < .
2
2
2
2
−2 − 3i
Câu 27. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 3.
D. max |z| = 2.
Trang 2/5 Mã đề 001
Câu 28. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
B. S = .
C. S = .
D. S = .
A. S = .
2
4
2
4