Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4(−3 + i) (3 − i)2
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 1. Cho số phức z thỏa mãn z =
−i
√
√
√1 − 2i
√
B. |w| = 6 3.
C. |w| = 48.
D. |w| = 4 5.
A. |w| = 85.
Câu 2. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. 21008 .
B. −21008 .
C. −21008 + 1.
D. −22016 .
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 3. Số phức z =
21008 i
A. 21008 .
B. 0.
C. 2.
D. 1.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 2.
B. 3.
C. 0.
D. 1.
Câu 5. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 + 2i.
B. −3 − 2i.
C. −3 − 10i.
D. 11 + 2i.
4 − 2i (1 − i)(2 + i)
+
là
Câu 6. Phần thực của số phức z =
2−i
2 + 3i
29
29
11
11
A. .
B. − .
C. .
D. − .
13
13
13
13
Câu 7. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. πrl.
B. 13 πr2 l.
C. 2πrl.
D. 32 πrl2 .
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 8. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (0; 2).
B. (−2; 0).
C. (2; 0).
D. (0; −2).
Câu 9. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 10. Phần ảo của số phức z = 2 − 3i là
A. −3.
B. 3.
C. −2.
D. 2.
Câu 11. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 3.
B. 15.
C. 17.
D. 7.
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.
B. −1.
C. 0.
D. 3.
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và 2 + 3i.
B. 4 − i và −4 + i.
C. 5 − 2i và −5 + 2i.
D. 4 + i và −4 + i.
Câu 14. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?
√
A. MN = 2 5.
B. MN = 10.
C. MN = 10.
D. MN = 5.
Câu 15. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
1
3
3
A. .
B. − .
C. − .
D. .
2
2
2
2
Trang 1/5 Mã đề 001
Câu 16. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m < 0 hoặc m > . B. 0 ≤ m < .
C. 0 < m < .
D. m ≥ 0.
4
4
4
Câu 17. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 18. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. 8.
C. −12.
D. 12.
z−z
=2?
Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.
√
Câu 20. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 33.
B. |z| = 10.
C. |z| = 50.
D. |z| = 5 2.
1+i
z
Câu 21. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
2
Câu 22. Cho các số phức z thoả mãn (1 + z) là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Hai đường thẳng.
C. Đường tròn.
D. Một đường thẳng.
Câu 23. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B.
.
C. 5π.
D. 25π.
2
4
z+i+1
là số thuần ảo?
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Elip.
B. Một Parabol.
C. Một đường thẳng.
D. Một đường tròn.
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 4 = 0.
C. x + y − 8 = 0.
D. x − y + 8 = 0.
√
Câu 26. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 33.
C. |z| = 5 2.
D. |z| = 50.
z+i+1
Câu 27. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Parabol.
B. Một đường tròn.
C. Một Elip.
D. Một đường thẳng.
Câu 28. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 3.
C. P = 2.
D. P =
.
A. P =
2
2
Câu 29. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 4π.
C. 2π.
D. 3π.
Câu 30. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 3π.
D. 2π.
Trang 2/5 Mã đề 001
z − z
=2?
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một đường tròn.
C. Một đường thẳng.
D. Một Elip.
Câu 32. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 3 5.
C. max T = 2 10.
D. max T = 2 5.
A. max T = 3 2.