Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho P = 1 + i + i + i + · · · + i . Đâu là phương án chính xác?
A. P = 1 + i.
B. P = 0.
C. P = 1.
D. P = 2i.
4 − 2i (1 − i)(2 + i)
Câu 2. Phần thực của số phức z =
+
là
2−i
2 + 3i
11
29
11
29
A. − .
B. − .
C. .
D. .
13
13
13
13
Câu 3. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −9.
B. 10.
C. 9.
D. −10.
2
3
2017
Câu 4.√Cho số phức z1 = 3 + 2i,
biểu thức |z1 + z1 z2 | là
√ z2 = 2 − i. Giá trị của √
√
B. 3 10.
C. 130.
D. 10 3.
A. 2 30.
Câu 5. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
C. z − z = 2a.
D. z + z = 2bi.
B. z · z = a2 − b2 .
A. |z2 | = |z|2 .
2017
(1 + i)
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 6. Số phức z =
21008 i
A. 1.
B. 21008 .
C. 0.
D. 2.
Câu 7. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ−1 .
B. y′ = π1 xπ−1 .
C. y′ = xπ−1 .
D. y′ = πxπ .
Câu 8. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 62 a3 .
B. 2a3 .
C. 22 a3 .
D. 42 a3 ..
Câu 9. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (2; 3).
C. (12; +∞).
D. (−∞; 3).
Câu 10. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .
B. 60◦ .
C. 90◦ .
D. 30◦ .
Câu 11. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
C. 32 πrl2 .
D. πrl.
A. 2πrl.
B. 13 πr2 l.
Câu 12. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 6a2 .
B. ln a.
C. ln 32 .
D. ln 23 .
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. -3.
C. 2.
D. 1.
Câu 14. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
B. Phương trình đã cho ln có nghiệm.
−b
C. Phương trình đã cho có tổng hai nghiệm bằng
.
a
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Trang 1/5 Mã đề 001
Câu 15. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 4.
B. 1.
C. 2.
D. 3.
Câu 16. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 3.
B. T = 9.
C. T =
.
D. T = .
2
4
Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?
√
√
A. |w| = 37.
B. |w| = 5.
C. |w| = 13.
D. |w| = 5 13.
Câu 18. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng √
bao nhiêu?
√
B. MN = 5.
C. MN = 10.
D. MN = 10.
A. MN = 2 5.
Câu 19. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 4π.
C. 3π.
D. 2π.
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x − y + 4 = 0.
Câu 21. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
B. S = .
C. S = .
A. S = .
4
2
4
D. S =
1+i
z
2
15
.
2
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó độ dài của MN là
√
B. MN = 4.
C. MN = 5.
D. MN = 5.
A. MN = 2 5.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác nhọn.
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. 3π.
C. 2π.
D. π.
√
Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 50.
C. |z| = 5 2.
D. |z| = 33.
Câu 26. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x + 1)2 + (y − 2)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 27. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
A. max T = 3 5.
B. max T = 2 5.
C. max T = 3 2.
D. max T = 2 10.
√
Câu 28. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 4.
D. max |z| = 7.
Trang 2/5 Mã đề 001
Câu 29. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
9 9
1
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
C. √ .
D. √ .
A. √ .
B. .
2
13
5
2
Câu 30. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
B. P =
.
C. P =
.
D. P = 2.
A. P = 3.
2
2
1+i
z
Câu 31. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
25
15
15
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
√
Câu 32. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
B. |z| = 33.
C. |z| = 50.
D. |z| = 5 2.
A. |z| = 10.
Câu 33. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z
√ − 1|
A. P = 1.
B. P = −2016.
C. P = 2016.
D. max T = 2 5.
z
Câu 34. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức M = |z + 1 − i| là √
√
C. 8.
D. 2 2.
A. 2.
B. 2.
Câu 35. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm Q.
1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z
B. điểm R.
C. điểm S .
D. điểm P.
Câu 36. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 0.
B. A = 1 + i.
C. A = −1.
D. A = 1.
Câu 37. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. |z| = 1.
B. Phần thực của z là số âm.
C. z là số thuần ảo.
D. z là một số thực không dương.
2
1
Câu 38. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
=
z1 z2
1
z1
z2
. Tính giá trị biểu thức P =
+
z1 + z2
z2
z1
√
√
1
3 2
A. 2.
D.
B. 2.
C. √ .
.
2
2
Câu 39. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 0.
B. (1; 2).
C. (0; 3).
D. x = 1.
Câu 40. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
C. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
D. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 41. Hình đa diện dưới đây có bao nhiêu cạnh?
Trang 3/5 Mã đề 001
A. 15.
B. 21.
C. 18.
D. 12.
Câu 42. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực tiểu của hàm số là 3.
B. Hàm số có hai điểm cực trị.
C. Hàm số có một điểm cực đại và một điểm cực tiểu.
D. Giá trị cực đại của hàm số là 0.
Câu 43. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
A. y =
2x + 3
.
x−1
B. y =
2x − 1
.
x+1
−∞
C. y =
2x + 1
.
x−1
D. y =
2x − 3
.
x−1
Câu 44. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số có một điểm cực đại.
B. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
C. Điểm cực tiểu của hàm số là (0; 1).
D. Đồ thị hàm số khơng có tiệm cận.
Câu 45. Trong khơng gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 46. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
đường tròn đáy đến mặt √
phẳng (S AB) bằng
√ khoảng cách từ tâm của
5
24
C. 5 .
A. 24 .
B. 4 2.
D. 8 2.
Câu 47. Tập nghiệm của bất phương trình 2 x+1 < 4 là
A. (−∞; 1).
B. (−∞; 1].
C. (1; +∞).
D. [1; +∞).
Câu 48. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. P(1; 2; 3).
B. N(2; 1; 2).
C. M(2; −1; −2).
D. Q(1; 2; −3).
Câu 49. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (4; 5).
B. (3; 4).
C. (2; 3).
D. (6; 7).
Câu 50. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
18
A. 71 .
B. 354 .
C. 35
.
D. 359 .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001