Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. −3 − 10i.
B. −3 + 2i.
C. 11 + 2i.
D. −3 − 2i.
Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 1.
B. A = 2ki.
C. A = 0.
D. A = 2k.
Câu 3. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 .
B. −22016 .
C. 21008 .
D. −21008 + 1.
Câu 4. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. −7.
C. −3.
D. 7.
Câu 5. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −9.
C. 9.
D. −10.
Câu 6. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực dương.
C. Mô-đun của số phức z là số phức.
B. Mô-đun của số phức z là số thực không âm.
D. Mô-đun của số phức z là số thực.
. Gọi A và B là hai điểm thuộc
Câu 7. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường√
trịn đáy sao cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt phẳng (S AB) bằng
A. 8 2.
B. 245 .
C. 4 2.
D. 245 .
Câu 8. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của√ |z|. Giá trị của M 2 + m2√bằng
A. 11 + 4 6.
B. 18 + 4 6.
C. 28.
Câu 9. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = 1x .
C. y′ = x ln1 3 .
A. y′ = lnx3 .
D. 14.
D. y′ = − x ln1 3 .
Câu 10. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 4.
B. 1.
C. 2.
D. 3.
Câu 11. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; +∞).
C. (1; 2).
D. (−∞; 1).
Câu 12. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.
D. y = x2 − 4x + 1.
A. y = x3 − 3x − 5.
B. y = x4 − 3x2 + 2.
C. y = x−3
x−1
Câu 13. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
7
3
A. − .
B. − .
C. .
D. .
4
4
4
4
Câu 14. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
A. 3.
B. 1.
C. 2.
D. 4.
Câu 15. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Trang 1/5 Mã đề 001
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
C. Phương trình đã cho ln có nghiệm.
−b
D. Phương trình đã cho có tổng hai nghiệm bằng
.
a
Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. 8.
B. −12.
C. −8.
D. 12.
Câu 17. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. −4.
B. 5.
C. −1.
D. 2.
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T =
.
C. T = .
D. T = 3.
2
4
√
Câu 19. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 10.
B. |z| = 50.
C. |z| = 5 2.
D. |z| = 33.
√
Câu 20. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. < |z| < .
C. |z| > 2.
D. |z| < .
2
2
2
2
Câu 21. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 5)2 + (y − 4)2 = 125.
Câu 22. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
Câu 23. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Hai đường thẳng.
C. Một đường thẳng.
D. Parabol.
Câu 24. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 20.
C. r = 4.
D. r = 22.
−2 − 3i
Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
A. max |z| = 3.
B. max |z| = 2.
C. max |z| = 2.
D. max |z| = 1.
Câu 26. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B.
.
C. 25π.
D. 5π.
2
4
Câu 27. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 2.
D. 1.
z−z
=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho