Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (725)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.85 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)

Mã đề thi 001

Câu 1. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 1 hoặc m ≤ 0. B. m ≥ 0 hoặc m ≤ −1. C. 0 ≤ m ≤ 1.
D. −1 ≤ m ≤ 0.
Câu 2. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 4.
B. 2.
C. 3.

D. 1.

Câu 3. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. z · z = a2 − b2 .
C. z − z = 2a.
D. |z2 | = |z|2 .
Câu 4. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. Khơng có số nào.


C. C.Truehỉ có số 0.

D. 0 và 1.

Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = 7 − 3i.
B. w = −3 − 3i.
C. w = 3 + 7i.

D. w = −7 − 7i.

Câu 6. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 3.
B. −3.
C. 7.
D. −7.
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.
B. −1.
C. 3.
D. 0.
Câu 8. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 45◦ .
B. 30◦ .
C. 90◦ .
D. 60◦ .
= y−1
=

Câu 9. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 1.
B. 5.
C. 13 .
D. 113 .
2

−16
Câu 10. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 92.
B. 193.
C. 184.

z−1
.
−3

Gọi (P) là mặt

x2 −16
?
27

D. 186.

Câu 11. Tích tất cả các nghiệm của phương trình ln x + 2 ln x − 3 = 0 bằng

C. e13 .
D. −3.
A. −2.
B. e12 .
R4
R4
R4
Câu 12. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 6.
B. 5.
C. 1.
D. −1.
2

Câu 13. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. 1.
C. −2.
D. 2.
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. 0 < m < .
B. m ≥ 0.
C. 0 ≤ m < .
D. m < 0 hoặc m > .
4

4
4
Câu 15. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 4.
B. 2.
C. 1.
D. 3.
Trang 1/5 Mã đề 001


Câu 16. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 4i.
C. 2i hoặc -2i.

D. 2 hoặc -2.

Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng√bao nhiêu?

A. MN = 10.
B. MN = 5.
C. MN = 10.
D. MN = 2 5.
Câu 18. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 2.
B. 1.
C. -3.
D. -1.

Câu 19. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. 3π.
D. π.
z
Câu 20. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác đều.
Câu 21. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. √ .
B. .
C. √ .

D. √ .
2
13
2
5

Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


B. |z| = 10.
C. |z| = 5 2.
D. |z| = 50.
A. |z| = 33.
Câu 23. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x − 5)2 + (y − 4)2 = 125.
2
2
C. (x − 1) + (y − 4) = 125.
D. (x + 1)2 + (y − 2)2 = 125.
Câu 24. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
A. S = .
B. S = .
C. S = .

4
2
2

D. S =

1+i
z
2

25
.
4

Câu 25. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 5.
C. r = 20.
D. r = 4.
Câu 26. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
2

4
1
1
A. √ .
B. √ .
C. .
D. √ .
2
13
5
2
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 28. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Parabol.
B. Hai đường thẳng.
C. Đường tròn.
D. Một đường thẳng.
Trang 2/5 Mã đề 001


z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường trịn.
D. Một Parabol.


Câu 29. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một đường thẳng.

B. Một Elip.

Câu 30. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. −1.
C. 0.
D. 1.






z−z


=2?
Câu 31. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một Elip.
B. Một đường tròn.

C. Một Parabol.
D. Một đường thẳng.
Câu 32. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 4 và 3.
C. 10 và 4.
D. 5 và 4.
Câu 33. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm R.

1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z

B. điểm S .

C. điểm Q.

D. điểm P.

Câu 34. (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 4.
B. |z| = 2.
C. |z| = .
D. |z| = 1.
2

Câu 35. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = 1.
B. A = 0.
C. A = 1 + i.
D. A = −1.
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?

2

2
A. P = |z|2 − 4 .
B. P = (|z| − 2)2 .
C. P = |z|2 − 2 .
D. P = (|z| − 4)2 .
4
= 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu !diễn số phức thuộc tập hợp
!
! nào sau đây?
!
1 5
1 9
9
1
A. ; .
B. ; .
C. ; +∞ .
D. 0; .

4 4
2 4
4
4

Câu 37. Cho số phức z thỏa mãn (3 − 4i)z −

Câu 38. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
A. 1.
B. .
C. .
2
2

D. 2.

Câu 39. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x

−∞

+∞

1
+

y′


+
+∞

2

y
2

−∞

2x − 3
2x − 1
2x + 1
2x + 3
.
B. y =
.
C. y =
.
D. y =
.
x−1
x+1
x−1
x−1
Câu 40. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1

A. V = .
B. V = 1.
C. V = .
D. V = .
6
2
3
A. y =

Trang 3/5 Mã đề 001


Câu 41. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối tứ diện đều.

B. Khối mười hai mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 42. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. −35.

B. 17.

C. 1.

D. −10.


Câu 43. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
B. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
C. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
Câu 44. Cho hàm số y =

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

điểm của (C) và d.
A. 2.

B. 1.

C. 0.

D. 3.

Câu 45. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 13 πr2 l.

B. 23 πrl2 .

C. πrl.


D. 2πrl.

Câu 46. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
A. 14 .

B. 72 .

C. 3.

D. 21 .

Câu 47. Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R.
Diện tích hình phẳng giới hạn bởi các đường y = f (x) và y = f ′ (x) bằng
A. 34 .

B. 52 .

C. 21 .

D. 14 .

Câu 48. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 7.

B. 17.

C. 15.

D. 3.


Câu 49. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng




A. 33 a.
B. 2 3 3 a.
C. 22 a.
D. 2a.




Câu 50. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 6.

B. 11.

C. 12.

D. 5.
Trang 4/5 Mã đề 001



- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×