Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho số phức z thỏa mãn (2 + i)z +
A. 4.
B. 13.
2(1 + 2i)
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
C. 3.
D. 5.
Câu 2. Cho hai số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
√ số phức z1 + z2 .
√
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 13.
Câu 3. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 0.
B. P = 1.
C. P = 1 + i.
D. P = 2i.
Câu 4. Tính mơ-đun của số phức z thỏa
√ mãn z(2 − i) + 13i = 1.
√
√
5 34
34
A. |z| = 34.
B. |z| =
.
C. |z| = 34.
D. |z| =
.
3
3
Câu 5. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực không âm. B. Mô-đun của số phức z là số thực.
C. Mô-đun của số phức z là số thực dương.
D. Mô-đun của số phức z là số phức.
Câu 6. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 9.
B. −10.
C. 10.
D. −9.
Câu 7. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 60◦ .
B. 90◦ .
C. 45◦ .
D. 30◦ .
Câu 8. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt
phẳng (S CD) bằng √
√
√
√
3
B. 22 a.
C. 2 3 3 a.
D. 2a.
A. 3 a.
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 0.
B. 2.
C. 3.
D. −1.
Câu 10. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2√bằng
A. 14.
B. 11 + 4 6.
√
C. 18 + 4 6.
D. 28.
Câu 11. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A. y = x4 − 3x2 + 2.
B. y = x3 − 3x − 5.
C. y = x−3
.
D. y = x2 − 4x + 1.
x−1
Câu 12. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n2 = (1; −1; 1).
B. →
n3 = (1; 1; 1).
C. →
n4 = (1; 1; −1).
D. →
n1 = (−1; 1; 1).
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 2.
B. -3.
C. 1.
D. -1.
Câu 14. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. − .
B. .
C. − .
D. .
2
2
2
2
Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 − (5 − 2i)z + 9 − 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
2
C. z + (5 − 2i)z − 9 + 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Trang 1/5 Mã đề 001
Câu 16. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = −3 − i.
B. z = −3 + i.
C. z = 3 − i.
D. z = 3 + i.
Câu 17. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z −z +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao √
nhiêu?
√
B. P = 13.
C. P = 2 5.
D. P = 5.
A. P = 5.
3
2
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T =
.
B. T = 3.
C. T = .
D. T = 9.
2
4
Câu 19. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là
√
A. MN = 5.
B. MN = 5.
C. MN = 2 5.
D. MN = 4.
Câu 20. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 4.
C. r = 20.
D. r = 22.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 2.
C. P = 3.
D. P =
.
A. P =
2
2
−2 − 3i
Câu 22. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 2.
B. max |z| = 1.
C. max |z| = 3.
D. max |z| = 2.
Câu 23. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
B. w = 27√− i hoặcw = 27 +√i.
A. w = 1 +
√ 27 hoặcw = 1 −√ 27.
D. w = 1 + 27i hoặcw = 1 − 27i.
C. w = − 27 − i hoặcw = − 27 + i.
Câu 24. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
√
Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √
√
√
A. |z| = 5 2.
B. |z| = 50.
C. |z| = 33.
D. |z| = 10.
1+i
Câu 26. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
−2
−
3i
Câu 27. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1