Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4(−3 + i) (3 − i)
Câu 1. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√
√
√ 1 − 2i
√
A. |w| = 85.
B. |w| = 48.
C. |w| = 4 5.
D. |w| = 6 3.
2
4 + 2i + i2017
có tổng phần thực và phần ảo là
Câu 2. Số phức z =
2−i
A. 1.
B. -1.
C. 3.
D. 2.
Câu 3. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 4.
C. 2.
D. 3.
Câu 4. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = 21009 i. C. (1 + i)2018 = −21009 . D. (1 + i)2018 = −21009 i.
Câu 5. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = 3 + 7i.
C. w = −3 − 3i.
D. w = 7 − 3i.
Câu 6. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 1.
B. A = 2ki.
C. A = 0.
D. A = 2k.
Câu 7. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 3.
B. −1.
C. 0.
D. 2.
Câu 8. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt
phẳng (S CD) bằng
√
√
√
√
2
B. 2a.
C. 2 3 3 a.
D. 33 a.
A. 2 a.
Câu 9. Có bao nhiêu số nguyên x thỏa mãn log3
A. 186.
B. 92.
x2 −16
343
< log7
C. 184.
x2 −16
?
27
D. 193.
Câu 10. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (6; 7).
B. (4; 5).
C. (2; 3).
D. (3; 4).
Câu 11. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (3; +∞).
B. (0; 2).
C. (−∞; 1).
D. (1; 3).
Câu 12. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng
A. 28.
B. 14.
√
C. 18 + 4 6.
√
D. 11 + 4 6.
Câu 13. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. 8.
C. −12.
D. 12.
Trang 1/5 Mã đề 001
Câu 14. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
A. − .
B. .
C. .
D. − .
4
4
4
4
Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
C. z2 − (5 − 2i)z + 9 − 7i = 0.
D. z2 − (1 + 4i)z + 9 − 7i = 0.
Câu 16. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
−b
.
C. Phương trình đã cho có tổng hai nghiệm bằng
a
D. Phương trình đã cho ln có nghiệm.
Câu 17. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 không có
nghiệm thực là
3
3
3
A. 0 < m < .
B. m < 0 hoặc m > . C. 0 ≤ m < .
D. m ≥ 0.
4
4
4
Câu 18. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và −4 + i.
B. 4 − i và 2 + 3i.
C. 5 − 2i và −5 + 2i.
D. 4 + i và −4 + i.
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 2 5.
C. max T = 3 5.
D. max T = 3 2.
A. max T = 2 10.
Câu 20. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 22.
C. r = 20.
D. r = 4.
z+i+1
Câu 21. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một đường tròn.
C. Một Parabol.
D. Một Elip.
−2 − 3i
Câu 22. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
C. max |z| = 3.
D. max |z| = 1.
A. max |z| = 2.
B. max |z| = 2.
Câu 23. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 2.
C. 1.
D. −1.
Câu 24. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 4π.
D. 3π.
1+i
Câu 25. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
15
A. S = .
B. S = .
C. S = .
D. S = .
2
2
4
4
Câu 26. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 5π.
C. .
D. 25π.
4
2
Trang 2/5 Mã đề 001
Câu 27. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P = 2.
C. P =
.
D. P = 3.
A. P =
2
2
2
Câu 28. Cho các số phức z thoả mãn (1 + z) là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Một đường thẳng.
D. Hai đường thẳng.
z
Câu 29. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác vuông.
Câu 30. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
đều là số phức k là
√ x + iy trên mặt phẳng phức.√Để tam giác MNP √
A. w = 1 + √27i hoặcw = 1 − √ 27i.
B. w = −√ 27 − i hoặcw =√− 27 + i.
D. w = 27 − i hoặcw = 27 + i.
C. w = 1 + 27 hoặcw = 1 − 27.
Câu 31. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. 2.
C. −1.
D. 0.
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là
√
A. MN = 4.
B. MN = 5.
C. MN = 2 5.
D. MN = 5.
Câu 33. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
√
2 2
. Mệnh đề nào dưới đây
Câu 34. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
3
đúng?
√
2 2
2
2
2
A. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | =
.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3
√
8
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3
√
2
Câu 35. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu?
√
√
3 6
10 2
7 2
4 5
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
2
3
3
5
z
Câu 36. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?
1 + |z|2
√
1
2
1
A. 2.
B. .
C. .
D.
.
5
2
3
√
3
1
Câu 37. Cho a, b, c là các số thực và z = − +
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
2
2
A. a2 + b2 + c2 − ab − bc − ca.
B. 0.
C. a + b + c.
D. a2 + b2 + c2 + ab + bc + ca.
Câu 38. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = .
B. |z| = 1.
C. |z| = 4.
D. |z| = 2.
2
Câu 39. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
Trang 3/5 Mã đề 001
x
−∞
+∞
1
+
y′
+
+∞
2
y
2
−∞
2x + 3
2x + 1
2x − 3
.
B. y =
.
C. y =
.
x−1
x−1
x−1
Câu 40. Hình đa diện dưới đây có bao nhiêu cạnh?
A. y =
A. 18.
B. 12.
C. 15.
D. y =
2x − 1
.
x+1
D. 21.
Câu 41. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
D. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên tập xác định của nó. B. Hàm số đồng biến trên khoảng (−2; 2).
C. Hàm số đồng biến trên khoảng (2; +∞).
D. Hàm số đồng biến trên khoảng (−2; +∞).
Câu 42. Cho hàm số y =
Câu 43. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y =
.
B. y = −x3 − 2x + 3.
C. y = −x2 + 3x + 5.
D. y = x4 − 2x2 + 1.
5−x
Câu 44. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 3.
B. 0.
C. 1.
D. 2.
Câu 45. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; 6).
B. (−6; 7).
C. (6; 7).
D. (7; −6).
Câu 46. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng
√
√
√
√
A. 42 a3 ..
B. 2a3 .
C. 22 a3 .
D. 62 a3 .
Câu 47. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 49.
B. 90.
C. 48.
D. 89.
Câu 48. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (3; 4).
B. (6; 7).
C. (2; 3).
D. (4; 5).
Trang 4/5 Mã đề 001
Câu 49. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =
x3 + (a + 2)x + 9 − a2