Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (575)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.06 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. C.Truehỉ có số 0.
C. Khơng có số nào.
D. 0 và 1.
!2016
!2018
1−i
1+i
Câu 2. Số phức z =
+
bằng
1−i
1+i
A. 0.
B. 1 + i.
C. 2.
D. −2.
(1 + i)(2 − i)
Câu 3. Mô-đun của số phức z =


√ 1 + 3i


A. |z| = 2.
B. |z| = 5.
C. |z| = 5.
D. |z| = 1.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 4. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. |z| = 4.
B. z = z.
C. z là số thuần ảo.
D. z = .
z
Câu 5. Tính
√ mơ-đun của số phức z thỏa
√ mãn z(2 − i) + 13i = 1.

34
5 34
A. |z| =
.
B. |z| =
.
C. |z| = 34.
D. |z| = 34.
3

3
2017
(1 + i)
Câu 6. Số phức z =
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
A. 2.
B. 1.
C. 21008 .
D. 0.
Câu 7. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
khoảng
cách
từ
tâm
của
đường
tròn
đáy
đến mặt phẳng (S AB) bằng


24
B. 4 2.
C. 8 2.
D. 245 .
A. 5 .

Câu 8. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; −2; 3).
B. (−1; −2; −3).
C. (1; 2; −3).
D. (−1; 2; 3).
Câu 9. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (6; 7).
B. (7; 6).
C. (−6; 7).
D. (7; −6).
Câu 10. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 90◦ .
B. 60◦ .
C. 30◦ .
D. 45◦ .
Câu 11. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (0; 1).
B. (−1; 2).
C. (1; 0).
D. (1; 2).
R4
R4
R4
Câu 12. Nếu −1 f (x)dx = 2 và −1 g(x)dx = 3 thì −1 [ f (x) + g(x)]dx bằng
A. 5.
B. −1.
C. 6.
D. 1.

Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 4 − i và −4 + i.
B. 5 − 2i và −5 + 2i.
C. 4 − i và 2 + 3i.

D. 4 + i và −4 + i.

Câu 14. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M3 (−2; 10).
B. M1 (6; 14).
C. M4 (6; −14).
D. M2 (2; −10).
Trang 1/5 Mã đề 001


Câu 15. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?


D. MN = 2 5.
A. MN = 5.
B. MN = 10.
C. MN = 10.
Câu 16. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = −3 + i.
C. z = −3 − i.


D. z = 3 + i.

Câu 17. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
số phức w = z2 + 2z bằng bao nhiêu?√


A. |w| = 5.
B. |w| = 13.
C. |w| = 5 13.
D. |w| = 37.
Câu 18. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
B. 0 ≤ m < .
C. m < 0 hoặc m > . D. m ≥ 0.
A. 0 < m < .
4
4
4
Câu 19. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 2π.
C. 4π.
D. π.







z−z


=2?
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường thẳng.
B. Một Parabol.
C. Một đường tròn.
D. Một Elip.
Câu 21. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. x = 2.
B. (x + 1)2 + (y − 2)2 = 125.
2
2
C. (x − 1) + (y − 4) = 125.
D. (x − 5)2 + (y − 4)2 = 125.
z+i+1
là số thuần ảo?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
z + z + 2i
A. Một Parabol.

B. Một đường thẳng.
C. Một Elip.
D. Một đường tròn.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác nhọn.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác cân.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 5π.
C. .
D. 25π.
A. .
2
4

Câu 25. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. < |z| < .

C. |z| < .
D. |z| > 2.
2
2
2
2
z
Câu 26. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.

Câu 27. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. < |z| < .
B. |z| < .
C. ≤ |z| ≤ 2.
D. |z| > 2.
2
2
2
2
Câu 28. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là

hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 4π.
C. π.
D. 3π.
Trang 2/5 Mã đề 001


Câu 29. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên
√ mặt phẳng phức. Khi đó độ dài của MN là

A. MN = 5.
B. MN = 5.
C. MN = 4.
D. MN = 2 5.
Câu 30. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 10.
B. max T = 3 5.
C. max T = 3 2.
D. max T = 2 5.
Câu 31. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng



A. 25π.
B.
.
C. 5π.
D. .
4
2
Câu 32. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Hai đường thẳng.
C. Parabol.
D. Đường tròn.
Câu 33. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
B. |w|min = .
C. |w|min = 2.
D. |w|min = 1.
A. |w|min = .
2
2
Câu 34. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm P.

B. điểm R.

1

là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z
C. điểm S .

Câu 35. Cho số phức z thỏa mãn z không phải là số thực và ω =
biểu thức
√ M = |z + 1 − i| là

A. 2.
B. 2 2.

C. 8.

D. điểm Q.
z
là số thực. Giá trị lớn nhất của
2 + z2
D. 2.

Câu 36. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 4.
B. |z| = 2.
C. |z| = 1.
D. |z| = .
2

2
Câu 37. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức

2
P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng
√ bao nhiêu?


3 6
7 2
10 2
4 5
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
2
3
3
5
z
Câu 38. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?
1√+ |z|2
2

1
1
A.
.
B. .
C. 2.
D. .
3
2
5
Câu 39. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
Câu 40. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.
B. (0; 3).
C. x = 0.

D. (1; 2).
Trang 3/5 Mã đề 001


Câu 41. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối bát diện đều.


B. Khối tứ diện đều.

C. Khối mười hai mặt đều.

D. Khối lập phương.

Câu 42. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?

x

−∞

+∞

1
+

y′

+
+∞

2

y
2

A. y =

2x + 1

.
x−1

2x − 1
.
x+1

B. y =

Câu 43. Cho hàm số y =
A. 2.

−∞

C. y =

2x + 3
.
x−1

D. y =

2x − 3
.
x−1

x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 0.

C. −1.
D. 3.

Câu 44. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 0.

B. 1.

C. 2.

D. 3.





Câu 45. Xét các số phức z thỏa mãn

z2 − 3 − 4i

= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị
nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng


A. 14.
B. 18 + 4 6.
C. 11 + 4 6.
D. 28.
Câu 46. Cho


R

1
x

A. F ′ (x) = ln x.

dx = F(x) + C. Khẳng định nào dưới đây đúng?
B. F ′ (x) = 1x .

C. F ′ (x) =

2
.
x2

D. F ′ (x) = − x12 .

Câu 47. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 48. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d = R.

B. d > R.

C. d = 0.

D. d < R.


Câu 49. Tập nghiệm của bất phương trình 2 x+1 < 4 là
B. (1; +∞).

A. (−∞; 1).
Câu 50. Nếu
A. 6.

R2
0

f (x)dx = 4 thì

C. (−∞; 1].

D. [1; +∞).

R 2 h1

B. −2.

0

i
f
(x)

2
dx bằng
2
C. 0.


D. 8.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×