Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 6 (811)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.6 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
ln 10

D. f 0 (0) = 1.

Câu 2. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 3. [2] Đạo hàm của hàm số y = x ln x là


A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 + ln x.

d = 30◦ , biết S BC là tam giác đều
Câu 4. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
13
9
16
Câu 5. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.

11
A. 5.
B. 7.
C.
.
D.
2
x2 − 12x + 35
Câu 6. Tính lim
x→5
25 − 5x
2
A. +∞.
B. −∞.
C. .
D.
5
Câu 7. Biểu thức nào sau đây khơng có nghĩa

−3
A. 0−1 .
B. (−1)−1 .
C.
−1.
D.

9
.
2


2
− .
5

(− 2)0 .

Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.

Câu 9. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
2mx + 1
1
Câu 10. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
Câu 11. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.

B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 12. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2

Câu 13. Thể tích của khối lập phương có cạnh bằng a 2 √

2a3 2
A. V = 2a3 .
B. 2a3 2.
C.
.
3

D. m =

1 − 2e
.

4e + 2


D. V = a3 2.
Trang 1/10 Mã đề 1


Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − 2 .
A. − .
2e
e
Câu 15. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.

1
D. − .
e
D. 9.

π
Câu 16. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.



C. T = 4.
D. T = 2 3.
A. T = 2.
B. T = 3 3 + 1.
Câu 17. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 18. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
Câu 19. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
B.
A. 8 3.
.
C.
.

D. 6 3.
3
3
Câu 20. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
Câu 21. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
Câu 22. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 16 m.
D. 8 m.
Câu 23. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
2

D. D = (−2; 1).


Câu 24.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 25. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 26. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x + .
2x + 1
x

C. y = x4 − 2x + 1.

D. y = x3 − 3x.
Trang 2/10 Mã đề 1


Câu 27. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là


3
a 3
a3 3
a3
A.
.
B.
.
C. a3 .
D.
.
6
2
3
Câu 28. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 29. [1-c] Giá trị của biểu thức

A. 4.

log7 16
log7 15 − log7

B. −2.

Câu 30. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

15
30

bằng
C. −4.

D. 2.

C. 30.


D. 12.

Câu 31. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.

D. Ba mặt.

[ = 60◦ , S O
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Câu 33. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.

x2 + 3x + 5
Câu 34. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. .
C. 1.
D. 0.
A. − .
4
4
Câu 35. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 36. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3

a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
n−1
Câu 37. Tính lim 2
n +2
A. 0.
B. 2.
C. 1.
D. 3.
Câu 38. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Câu (I) sai.

D. Khơng có câu nào

sai.
Trang 3/10 Mã đề 1


5
Câu 39. Tính lim
n+3
A. 0.
B. 2.
4x + 1
Câu 40. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −4.

C. 1.

D. 3.

C. −1.

D. 4.

Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

D. Bốn mặt.


Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 43. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
Câu 44. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
Câu 45.
A. 0.

Câu 46.
1
A. .
6
Câu 47.

D. 30.
un
Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
B. −∞.
C. +∞.
D. 1.
x+1
Tính lim
bằng
x→−∞ 6x − 2
1
1
B. .
C. .
D. 1.
3
2
Z 1
Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.


B.

1
.
2

C. 20.

C. 0.

D.

1
.
4

!2x−1
!2−x
3
3
Câu 48. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).


D. (−∞; 1].

Câu 49. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Hai cạnh.

D. Ba cạnh.

Câu 50. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
B.
.
C. 2 13.
D. 26.
A. 2.
13
3
Câu 51. Cho hàm số y = −x + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 52. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3

−1 − i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 53. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 14 năm.
D. 12 năm.
Trang 4/10 Mã đề 1


Câu 54. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. − .
B. −2.
C. .
2
2
3
Câu 55. Giá trị cực đại của hàm số y = x − 3x + 4 là

A. 1.
B. 6.
C. −1.

D. 2.

D. 2.

Câu 56. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29

Câu 57. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
Câu 58. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
log 2x
Câu 59. [1229d] Đạo hàm của hàm số y =

x2

1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
A. y0 =
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 60. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 61. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các

x
e

C. S = 32.

D. S = 22.

2
Câu 62. Tính
√4 mô đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =

Câu 63. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. − ; +∞ .
C. −∞; .
A.
2
2
2


!
1
D. −∞; − .
2


5.

Câu 64. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 65. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 66. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.

C. 30.

D. 8.

Câu 67. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.

B. 12.

C. 8.

D. 30.
Trang 5/10 Mã đề 1


Câu 68. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 69.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
.
B.
.
A.
3
3

!n
4

C.
.
e

!n
5
D. − .
3

Câu 70. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 71. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 6.
D. V = 5.
Câu 72. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. .
e

D. 2e.


Câu 73. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
4
2
!
!
!
4x
1
2
2016
Câu 74. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2

2017
2017
2017
2016
.
D. T = 2016.
A. T = 1008.
B. T = 2017.
C. T =
2017
d = 300 .
Câu 75. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3

a3 3
3a
3
3
3
D. V =
A. V = 6a .
B. V =
.
C. V = 3a 3.
.
2

2
d = 120◦ .
Câu 76. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 3a.
D. 2a.
2
Câu 77. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 78. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. 9.
D. .
2
2
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √

đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3

a 3
2a 3
a3 3
3
.
B.
.
C. a 3.
D.
.
A.
3
3
6
Câu 80. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Trang 6/10 Mã đề 1


Câu 81.√Thể tích của tứ diện đều √

cạnh bằng a
a3 2
a3 2
A.
.
B.
.
2
4
Câu 82.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.
Z
C.

f (x)dx +

Z


a3 2
C.
.
6



a3 2
D.
.
12

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z
D.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 83. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 3
a 3

a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
2
4
12
9
2n + 1
Câu 84. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 1.
D. 0.
x−3
bằng?
Câu 85. [1] Tính lim
x→3 x + 3
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 86. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 3.

D. 1.

Câu 87. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
.
C. .
D. .
A. a.
B.
2
2
3
4
2
Câu 88. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m ≥ 0.

B. m > 1.
C. m > −1.
D. m > 0.
1 + 2 + ··· + n
Câu 89. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 90. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 91. Tính lim
A. −∞.

cos n + sin n
n2 + 1

B. 0.

C. +∞.

D. 1.
Trang 7/10 Mã đề 1


Câu 92. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. 2a 2.
D. a 2.
A.
2
4
2n − 3
Câu 93. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.

C. +∞.
D. −∞.
!4x
!2−x
2
3
Câu 94. Tập các số x thỏa mãn


#
" 3
! 2
"
!
#
2
2
2
2
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
A. −∞; .
5
3
5
3
1 − 2n
bằng?

3n + 1
1
A. 1.
B. .
3
2x + 1
Câu 96. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
2
Câu 95. [1] Tính lim

2
C. − .
3

D.

2
.
3

C. 1.

D. −1.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)

9x + 3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 98. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 97. [2-c] Cho hàm số f (x) =

Câu 99. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.

D. 3.


Câu 100. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 101. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.




Câu 102. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4

4
Câu 103. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối lập phương.
D. Khối tứ diện đều.
2

2

Câu 104. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (−∞; +∞).
5
Câu 105. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. 5.
B. .
C. 5.
5

D. (1; 2).

log √a

D. 25.
Trang 8/10 Mã đề 1



Câu 106. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
Câu 107. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 108. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 4.
D. 5.
2
3
7n − 2n + 1
Câu 109. Tính lim 3
3n + 2n2 + 1
2
7
B. 1.
C. - .
D. 0.
A. .
3
3
Câu 110. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √

với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 3
a3 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
8
Câu 111. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
Câu 112. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.

D. Phần thực là 4, phần ảo là 1.
Câu 113. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 114. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 7
a 5
.
B.
.
C.
.
D.

.
A.
16
4
32
8
Câu 115. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
C. 4.
D. 8.
Câu 116. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 117. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n
3
2
Câu 118. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).

Trang 9/10 Mã đề 1


Câu 119. Trong các khẳng định sau, khẳng định nào sai?

A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 120. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. [6, 5; +∞).

D. (4; 6, 5].
x+3
nghịch biến trên khoảng
Câu 121. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 122. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .

Câu 123. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
Câu 124. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 125. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
B. 7 3.
C. 16.
D. 8 2.
A. 8 3.
x+2
Câu 126. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 127. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.

B. 8 mặt.
C. 4 mặt.

D. 10 mặt.
3a
, hình chiếu vng
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
B. .
C.
.
D.
.
A. .
3
4
3
3
Câu 129. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.


B. 0.

C. 3.

D. 2.

Câu 130. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
loga 2
log2 a
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2.


B
B

3.

D

4.

5.

D

6.

7. A
9.

D

11. A
13.

B

C

8.

D


10.

D

12.

D

14. A

15. A

16.

17. A

18.

19.

D

C
B

20.

C
C


21.

B

22.

23.

B

24.

25.

B

26. A

27.

B

28.

D

30.

D


29.
31.

C
B

32. A
C

33.

D

34. A

35. A

36.

D

37. A

38.

D

39. A


40.

D

41.

B

42. A

43.

D

44. A

45. A
47.

46. A
B

48. A

49.
51.

D

50.

52.

B

53. A
55.

54.
C

59.

58.
D

61.

D
B

56.

B

57.

B

D
B


60.

C

62. A

C

63.

B

64.

65.

B

66.

B

68.

B

67. A
1


C


69.

B

70.

71.

B

72. A

73.
75.

74. A

C

76.

B

78. A

B


79. A

80.

C

81.

82.

C

83.

84.

B

D
C
D

85.

B

86.

C


87. A

88.

C

89. A

90. A

91.

B

92. A

93.

B

94.

B

95.

96.

B


97.

98.

D

100.

D

101.

D

103.

D
D

104.

C

105.

106.

C

107. A


108.

C

109.

B

112. A
114.

D
C

116.
118.

111.

D

113.

D

115.

D
C


119. A

120.

D

121.

C

B

123. A

124.

B

125.

126.

B

127. A

128.

C


117.

B

122.

B

99. A

102. A

110.

C

129.

D

130. A

2

C
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×