Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
C. 2.
D. 4.
cos n + sin n
Câu 2. Tính lim
n2 + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
!2x−1
!2−x
3
3
Câu 3. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].
1 + 2 + ··· + n
Câu 4. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
2n + 1
Câu 5. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 1.
D. 0.
d = 300 .
Câu 6. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3
√
a 3
3a 3
.
B. V =
.
C. V = 3a3 3.
A. V =
D. V = 6a3 .
2
2
Câu 7. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
x
Câu 8. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.
C. .
D. .
A. 1.
B.
2
2
2
3a
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên
√ mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
Câu 10.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
2
12
6
d = 60◦ . Đường chéo
Câu 11. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
2a3 6
4a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 12. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H
⊥
(ABCD),
S
A
=
a
√
√ 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 1/10 Mã đề 1
Câu 13. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.
D. S = 135.
Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Câu 15. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 16. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 17. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; −1) và (0; +∞).
Câu 18. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 4.
D. 3.
Câu 19. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 10 năm.
D. 7 năm.
Câu 20. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.
D. {5; 3}.
Câu 21. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
D. Khối bát diện đều.
C. Khối lập phương.
Câu 22. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
8
Câu 23. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a
3
A. 20a3 .
B. 40a3 .
C.
.
D. 10a3 .
3
Câu 25. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
Trang 2/10 Mã đề 1
Câu 26. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 27. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
un
Câu 29. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 30. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 0.
Câu 31. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
Câu 32. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.
2n − 3
bằng
Câu 33. Tính lim 2
2n + 3n + 1
A. 0.
B. +∞.
D. 7.
D. (−1; −7).
C. {3; 4}.
D. {4; 3}.
C. −∞.
D. 1.
Câu 34. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
2
4
Câu 35. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 37. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B. a.
C.
.
D. .
2
2
3
Câu 38. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Trang 3/10 Mã đề 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
Câu 39. [3-1214d] Cho hàm số y =
Câu 40.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 41. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.
D. −3.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 42. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−∞; −3).
D. (−3; +∞).
2−n
bằng
Câu 43. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Câu 44. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 45. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 6.
D. 10.
Câu 46. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 47. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).
D. (−∞; 6, 5).
Câu 48. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
2
4
12
Câu 49. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
2
2
2
1 + 2 + ··· + n
Câu 50. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3
√
√
Câu 51. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 52. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
6
3
2
Trang 4/10 Mã đề 1
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 54. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
Câu 53. [2-c] Cho hàm số f (x) =
2
Câu 55. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 56. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 57. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 58. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
Câu 59. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có một hoặc hai.
D. Có hai.
Câu 60. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =
.
3
n3 − 3n
C. un =
.
n+1
!n
6
D. un =
.
5
Câu 61. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 62.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
!4x
!2−x
2
3
Câu 64. Tập các số x thỏa mãn
≤
là
3
2
"
!
#
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
3
5
5
log 2x
là
Câu 65. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
Câu 66. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
Trang 5/10 Mã đề 1
Câu 67. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = x
.
A. y0 =
ln 2
2 . ln x
Câu 68. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.
Câu 69. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
C. 3.
D. y0 = 2 x . ln x.
D. m = −2.
D. 1.
Câu 70. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
Câu 71. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
2n2 − 1
Câu 72. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 0.
D. 1.
3
Câu 73. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 8.
D. 20.
Z 3
a
x
a
Câu 74. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 75. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
B. .
C. .
D. .
A. .
9
9
3
3
Câu 76. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+2
c+3
c+1
c+2
Câu 77. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 78. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
36
6
Câu 79. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
5
5
1
4
A. − .
B.
.
C.
.
D.
.
3
3
3
e
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 80. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
3
3
√
a
3
a
2
a3 3
A.
.
B. 2a2 2.
C.
.
D.
.
24
12
24
Câu 81. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.
D. 0, 8.
Trang 6/10 Mã đề 1
Câu 82.
A. 2.
Câu 83.
A. R.
!
1
1
1
[3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
C. +∞.
B. .
2
Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
B. (0; 2).
C. (2; +∞).
D.
3
.
2
D. (−∞; 1).
3
Câu 84. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e2 .
√
Câu 85.
Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2
√
A. 6 2.
B. −7.
C. 7.
D. e3 .
√
D. −6 2.
Câu 86. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 87. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
Câu 88. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 89. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
Câu 90.
A. 0.
Câu 91.
2
A. .
3
B. (II) và (III).
x−3
bằng?
[1] Tính lim
x→3 x + 3
B. +∞.
2n + 1
Tính giới hạn lim
3n + 2
1
B. .
2
C. (I) và (II).
D. Cả ba mệnh đề.
C. 1.
D. −∞.
3
.
2
π π
3
Câu 92. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 3.
D. 1.
C. 0.
D.
Câu 93. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 94. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
Trang 7/10 Mã đề 1
Câu 95.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [−1; 0].
Câu 96. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
Câu 97. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
C. 6.
D. 5.
Câu 98. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
log 2x
là
x2
1 − 2 ln 2x
1 − 2 log 2x
B. y0 = 3
.
C. y0 =
.
x ln 10
x3
Câu 99. [1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. y0 =
2x3
1
.
ln 10
Câu 100. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 101. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 102. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 9 cạnh.
Câu 103. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
Câu 104. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 105. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 8/10 Mã đề 1
x−2
Câu 106. Tính lim
x→+∞ x + 3
2
B. 1.
A. − .
3
C. 2.
D. −3.
d = 120◦ .
Câu 107. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.
2
Câu 108. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. 2e.
D. .
e
[ = 60◦ , S O
Câu 109. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 110. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .
D. −e.
A. − .
e
2e
e
x+1
Câu 111. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
6
2
Câu 112.
Các khẳng định nàoZsau đây là sai?
Z
Z
Z
A.
Z
C.
f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).
f (u)dx = F(u) +C. B.
Câu 113. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
Z
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
C. 20.
D. 12.
Câu 114. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
Câu 115. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
D. Cả hai đều đúng.
Câu 116. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√
√
3
a 5
a 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
5
3
25
Câu 117. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
x3 − 1
Câu 118. Tính lim
x→1 x − 1
A. +∞.
B. 0.
C. 3.
D. −∞.
Trang 9/10 Mã đề 1
Câu 119. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
Câu 120. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 5.
C. 7.
D.
.
A. .
2
2
Câu 121. Biểu thức nào sau đây khơng
√ 0 có nghĩa
√
−3
−1
A. 0 .
B. (− 2) .
C.
−1.
D. (−1)−1 .
Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
√
a3 3
a3 3
2a3 3
3
.
B. a 3.
C.
.
D.
.
A.
3
3
6
Câu 123. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 124. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
.
B. 2a 6.
C. a 6.
D.
2
Câu 125. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Câu 126. Dãy số nào sau đây có giới hạn khác 0?
1
1
sin n
n+1
A. .
B. √ .
C.
.
D.
.
n
n
n
n
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (I) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 128. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 129. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 130. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3. A
4.
5. A
6. A
7.
B
9.
B
B
8. A
C
10.
11.
C
12.
D
13.
C
14.
D
15. A
16.
B
17.
B
18.
19.
B
20.
B
22.
B
21.
D
23.
24. A
C
25.
D
26.
27.
D
28. A
29.
D
30. A
31. A
32.
33. A
34. A
35.
37.
D
D
C
D
36.
B
38.
39.
C
40. A
41.
C
42. A
C
B
44.
43. A
D
46.
C
47. A
48.
C
49. A
50.
C
45.
C
51.
53.
B
55.
54.
C
57.
D
C
59.
61.
63.
52.
C
D
B
56.
C
58.
C
60.
B
62.
B
64. A
B
65. A
67.
D
66.
68.
B
1
B
D
69. A
70. A
71.
D
72.
C
73.
D
74.
C
75. A
76.
77. A
78. A
81. A
83.
D
80.
C
79.
D
82. A
84. A
B
85. A
86.
D
87. A
88.
D
89.
90. A
C
91. A
93.
B
D
95.
97.
99.
C
92.
D
94.
D
96.
D
98.
100.
B
101. A
102.
103.
105.
B
106.
107.
B
108. A
109. A
110.
C
113.
115.
D
B
104.
C
111.
B
C
B
B
112. A
D
114. A
116.
B
117.
D
118.
D
C
119. A
120. A
121. A
122.
C
124.
C
123.
B
125.
C
126.
127.
C
128.
129.
D
130.
2
D
C
D