Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (153)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.82 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
log23

q
x+ log23 x + 1+4m−1 = 0

Câu 1. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].

Câu 2. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 3. Dãy số nào sau đây có giới hạn khác 0?
sin n
1


B.
.
A. .
n
n

C.

n+1
.
n

1
D. √ .
n

Câu 4. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1

đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 6. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
2

C. D = R \ {1; 2}.

Câu 7. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. D = R.
D. 1 nghiệm.

Câu 8. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
d = 30◦ , biết S BC là tam giác đều
Câu 9. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
26
16
!
1
1
1
+
+ ··· +
Câu 10. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 1.
C. 2.

D. .
2
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
!
5 − 12x
Câu 12. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Trang 1/10 Mã đề 1


Câu 13. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn

= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn

Câu 14. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 6).
D. (2; 4; 3).
Câu 15. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.

D. Bốn mặt.

Câu 17. Giá trị của lim (3x2 − 2x + 1)

x→1
A. 1.
B. 3.

C. 2.

D. +∞.

Câu 18. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

D. {5; 3}.

Câu 19. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3

a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
6
12
Câu 20. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.

D. 1.

C. 3.

D. 0.


3

x −1
Câu 21. Tính lim
x→1 x − 1
A. −∞.
B. +∞.



2
Câu 22.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
A. 6 2.
B. −7.
C. 7.


D. −6 2.

Câu 23. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 24. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 0.
B. e2016 .
C. 1.
D. 22016 .
Trang 2/10 Mã đề 1


Câu 25. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
Câu 27. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 28. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
B. m < .
C. m ≤ .
D. m ≥ .
A. m > .
4
4
4
4
Câu 29. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.



x = 1 + 3t




Câu 30. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có

phương

 trình là










x = −1 + 2t
x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t

















.
C. 
B. 
A. 
y = −10 + 11t .
y = −10 + 11t . D. 
y=1+t
y = 1 + 4t .

















z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
!4x
!2−x
2
3
Câu 31. Tập các số x thỏa mãn


"
!
" 3 ! 2
#
#
2
2
2
2
A. − ; +∞ .

; +∞ .
B.
C. −∞; .
D. −∞; .
3
5
3
5
Câu 32.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
log 2x

Câu 33. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
.
B. y0 = 3
.
C. y0 = 3
.

D. y0 =
3
2x ln 10
x ln 10
2x ln 10
x3
x−1 y z+1
Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 35.! Dãy số nào sau đây có giới! hạn là 0?
!n
!n
n
n
4
5
5
1
A.
.

B. − .
C.
.
D.
.
e
3
3
3
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2

4
Trang 3/10 Mã đề 1


d = 120◦ .
Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Câu 38.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z

Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 39. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 40. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. 30.

D. 10.

Câu 41. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√M + m
√ của hàm số. Khi đó tổng
B. 7 3.
C. 8 2.

D. 16.
A. 8 3.

x2 + 3x + 5
Câu 42. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. 1.
D. − .
4
4
2n2 − 1
Câu 43. Tính lim 6
3n + n4
2
C. 1.
D. 2.
A. 0.
B. .
3
log 2x
Câu 44. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x

1 − 2 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
x ln 10
2x ln 10
Câu 45. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
π
Câu 46. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.

C. T = 3 3 + 1.
D. T = 2 3.
!
1
1
1
Câu 47. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. .
D. +∞.
2
2
Câu 48. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 49. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

D. x = −5.
Trang 4/10 Mã đề 1



4x + 1
Câu 50. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.

C. −1.

D. −4.

1
Câu 51. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 52. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =

4 − 2e
4e + 2
4e + 2
Câu 53. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).

D. m =

1 − 2e
.
4 − 2e

D. (1; +∞).

Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. 2
.
B.
.
C.
.
D.
.




a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 55. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
24
48
8

Câu 56. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
C. 1.
D. 2.
A. 3.
B.
3
Câu 57. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.

x→+∞

x→+∞

Câu 58. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).
3

2

D. (−∞; 1).

Câu 59. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 60. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
A. −
.
B. − .
C.
.
D.
.
100

16
100
25
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 14.
D. ln 12.
Câu 62. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 5/10 Mã đề 1


1

Câu 63. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).

D. D = (−∞; 1).

2
Câu 64. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.

Câu 65. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 66. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.

1
Câu 67. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
D. 2.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 68. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 2.
D. 1.
x−2 x−1
x
x+1
Câu 69. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).

Câu 70. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
1
Câu 71. [1] Giá trị của biểu thức log √3
bằng

10
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
2x + 1
Câu 72. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 73. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 74. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 3
a3 2
2
A.
.
B. 2a 2.
C.
.
D.
.
24
12
24
Câu 75. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.


x
+
3
+
6−x
Câu 76.
Tìm
giá
trị
lớn

nhất
của
hàm
số
y
=


A. 2 3.
B. 3 2.
C. 3.

D. m = −3.
D. 2 +


3.
Trang 6/10 Mã đề 1


Câu 77. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
x2 − 12x + 35
Câu 78. Tính lim
x→5
25 − 5x
2

2
A. −∞.
B. +∞.
C. − .
D. .
5
5
Câu 79. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. −6.
2

D. 6.

Câu 80. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

3
a 3
a
a 3
A.
.
B.
.
C.

.
D. a3 .
9
3
3
Câu 81. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 82. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
8
Câu 83. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.

D. 82.
1 − 2n
bằng?
Câu 84. [1] Tính lim
3n + 1
1
2
2
B. 1.
C. .
D. .
A. − .
3
3
3
Câu 85. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = e + .
D. T = 4 + .
e
e
Câu 86. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .

D. 27cm3 .
Câu 87. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 88. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 2.
D. 3.
Z 3
x
a
a
Câu 89. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 16.
D. P = 28.
1
Câu 90. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy

3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
Trang 7/10 Mã đề 1


Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
4a 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6

Câu 92. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. −2.
D. .
2
2
Câu 93. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A.
.
B. y0 =
.
C. y0 = .
D. y0 =
.
10 ln x
x ln 10
x
x
log(mx)
= 2 có nghiệm thực duy nhất
Câu 94. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.

B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
x2 − 9
Câu 95. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. 6.
D. −3.
Câu 96. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

C. 12.

D. 8.

Câu 97. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

Câu 98. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
B. V = S h.
C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
1
Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.

.
A.
12
6
4
12
Câu 101. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. m ≥ 0.
D. − < m < 0.
4
4
0 0 0 0
Câu 102. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √

.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
x+1
bằng
x→+∞ 4x + 3
B. 1.

Câu 103. Tính lim
A. 3.

C.

1
.
4

D.

1
.
3
Trang 8/10 Mã đề 1


Câu 104. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Câu 105. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.
Câu 106. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
; +∞ .
B. − ; +∞ .
C. −∞; .
A.

2
2
2

Câu 107. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.

!
1
D. −∞; − .
2
D. 36.

Câu 108. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
6
15
9

Câu 109. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −9.
C. −15.
D. −12.
2
Câu 110. Tính
√ mơ đun của số phức√4z biết (1 + 2i)z = 3 + 4i.

A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 111. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 1.
D. lim un = 0.
2n + 1
Câu 112. Tính giới hạn lim
3n + 2
1
3
2

B. 0.
C. .
D. .
A. .
3
2
2
Câu 113. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 115. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.
D. Khối tứ diện đều.

Câu 116. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. Vô số.
B. 64.
C. 63.
D. 62.
2
Câu 117. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2

Trang 9/10 Mã đề 1


Câu 118. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
x2
Câu 119. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó

e
1
1
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
A. M = , m = 0.
e
e
Câu 120. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
6
3
2
3
2
Câu 121. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?

A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 122. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.


4n2 + 1 − n + 2
bằng
Câu 123. Tính lim
2n − 3
A. 2.
B. 1.

C. 144.

D. 4.

C. +∞.

D.

3
.
2

Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .

B. −e2 .
C. 2e2 .
D. −2e2 .
Câu 125.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

f (t)dt = F(t) + C.

Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √


a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 127. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.

c+2
c+2
c+3
c+1
Câu 128. Biểu thức nào sau đây khơng

√ 0 có nghĩa
−3
−1
C.
−1.
D. (−1)−1 .
A. 0 .
B. (− 2) .
!2x−1
!2−x
3
3
Câu 129. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [1; +∞).
C. (−∞; 1].
D. [3; +∞).

Câu 130. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
12
3
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.


C

4.

D

6.

D

5. A
7.

C

9. A
11.

8.

B

10.

B

12. A

C


13.

D

14.

C
C

15.

C

16.

17.

C

18. A

19.

D

20. A

21.


C

22. A

23.

C

24. A

25. A

26.

C
C

27.

B

28.

29.

B

30.

31. A

33.

B

35.

D

37.
39.

B
D

32.

C

34.

C

38.

B

40.

B


42.

43. A
45.

D

36. A

C

41.

C

D

44.

C

46. A

B

47. A

48.

C


49.

C

50.

B

51.

C

52.

B

53.

B

54.

55. A

56.

57. A

58.


59.

D

C
D
C

60. A

61.

C

62.

63.

C

64.

65.

B

66.

67.


B

68.
1

D
B
D
C


69.

C

70.

D

71.

C

72.

D
D

73.


B

74.

75.

B

76.
78.

77. A
79.

B

B

80.

81. A

D
B
C

82.

83.


B

84. A

85.

B

86.

88.

B

89.

B

91.

B

93.

B

90.

D


92.

C

94. A
96.

D

98. A

D

95.

C

97.

C

99.

B

100. A

101. A


102. A

103.

104. A

105.

B

107.

B

110.

B

106.

B

109.

D

111. A

C


112. A

113.

B

114.

115.

B

116.

D

118.

D

D

117.
119.

120. A

C

121. A

123.

122.
B

124.

125. A

126.

127. A

128. A

129.

C

130.

B

2

C
B
C
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×