Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 2 (153)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.05 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e + 1.
e
x2 − 3x + 3
Câu 2. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
C. x = 3.

D. 2e.

D. x = 0.

Câu 3. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!


! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 4. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
D. a 3.
A.
.
B.
.
C. a 2.
3
2

Câu 5. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.
D. 2.
Câu 6. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
1 − n2
Câu 7. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. .
3
2

1
C. − .
2

D. 0.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1

0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 8. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 9. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
Câu 10. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 11. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với

đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 6
a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
48
24
16
48
Câu 13. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. −6.
2

D. 6.
Trang 1/10 Mã đề 1



Câu 14. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.

D. 7 mặt.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2

Câu 15. [3-1132d] Cho dãy số (un ) với un =

Câu 16. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.

D. 10 mặt.

Câu 17. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng





2a 3
a 3
a 3
A. a 3.
.
C.
.
D.
.
B.
2
2
3
Câu 18. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 19. Tìm giới hạn lim
A. 2.

2n + 1
n+1
B. 3.

C. 0.


Câu 20. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A.
10 ln x
x

C. y0 =

D. 1.
ln 10
.
x

D. y0 =

1
.
x ln 10

Câu 21. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .

B. k = .
C. k = .
D. k = .
6
9
15
18
Câu 22. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
x+3
Câu 23. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.
log7 16
Câu 24. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. −2.

D. 4.
2

Câu 25. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 5.
C. 4.

D. 2.

Câu 26. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x)g(x)] = ab.
x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim

x→+∞

f (x) a
= .

g(x) b
Trang 2/10 Mã đề 1



Câu 27. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vơ số.
Câu 28. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.

D. Tứ diện đều.

Câu 29. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
1
D. lim √ = 0.
n
B. lim

Câu 30. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 31. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].

D. (−∞; +∞).

Câu 32. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.

C. 10 cạnh.

D. 9 cạnh.

C. −∞.

D. +∞.

Câu 33. Tính lim
A. 1.

2n − 3
bằng
+ 3n + 1
B. 0.


2n2

0 0 0 0
0
Câu 34.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
2
3

Câu 35. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
Câu 36. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7

A. −7.
B. −5.
C. −3.
!
1
1
1
Câu 37. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. 2.
C. .
2

D. m > 1.
D. Không tồn tại.

D.

5
.
2

Câu 38. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.

C. Vô số.
D. 2.
Câu 39. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√ với đáy và S C = a 3. 3Thể
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.

12
9
4
2
Trang 3/10 Mã đề 1





x=t




Câu 41. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4

9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
2
Câu 42. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 43. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.

C. 8.


D. 10.

Câu 45. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3

4
x−2 y+2 z−3
x y−2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2
2
2
Câu 46.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.

C.
.
D.
.
4
2
6
12
Câu 47. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a3 3
a3 3
4a3 3
2a 3
A.
.
B.
.
C.
.
D.
.
3
3

2
3
Câu 48. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
Câu 49. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.


Câu 50. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều. D. Khối 12 mặt đều.
a
1
Câu 51. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
Trang 4/10 Mã đề 1


Câu 52. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
.
B.
.
C.
.

D. .
A.
9
9
9
9
Câu 53. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 54. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (III) sai.
sai.

1
Câu 55. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.

C. 2.

D. Câu (II) sai.

D. −2.

Câu 56. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.

.
B.
.
C.
.
D.
.
8
4
12
4
Câu 57. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Câu 58. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =

.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
Câu 59. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
x2
Câu 60. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = e, m = 1.
D. M = , m = 0.
e
e
Câu 61. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un

B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 5/10 Mã đề 1


Câu 62. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đơi.
x
Câu 63.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. 1.
D. .
2

2
2
3
2
Câu 64. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
.
A. −7.
B. −2.
C. −4.
D.
27
Câu 65. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.

Câu 66. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .

3
Câu 67. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 68. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = [2; 1].

x2 +x−2

12 + 22 + · · · + n2
Câu 69. [3-1133d] Tính lim
n3
1
2
A. .
B. .
3
3

D. 5 mặt.


C. D = R \ {1; 2}.

D. D = (−2; 1).

C. 0.


D. +∞.

1
Câu 70. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 71. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 72. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
[ = 60◦ , S A ⊥ (ABCD).
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3

3
3

a 3
a 2
a 2
.
B.
.
C.
.
D. a3 3.
A.
4
6
12
Câu 74. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).


x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 75. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 6/10 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 1.
D. 3.
p
ln x
1
Câu 76. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3

1
8
8
1
B. .
C. .
D. .
A. .
3
9
9
3
Câu 77. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 78. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
6
24
π
Câu 79. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
n−1
Câu 80. Tính lim 2

n +2
A. 0.
B. 3.
C. 2.
D. 1.
Câu 81. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√a 5. Thể tích khối chóp3 S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
2a 3
2a
4a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 82. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.

B. Vô nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 83.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 84. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.

Câu 85. Thể tích của khối lập phương

cạnh
bằng
a
2

3



2a
2
B.
.
C. V = 2a3 .
D. V = a3 2.
A. 2a3 2.
3

Câu 86. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a 6
a3 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
18
6

6
Z 1
6
2
3
. Tính
f (x)dx.
Câu 87. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. −1.

B. 2.

C. 4.

D. 6.
Trang 7/10 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vô số.
D. 0.

Câu 88. [4] Xét hàm số f (t) =


Câu 89. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. − .
e
e
2e
!4x
!2−x
3
2


Câu 90. Tập các số x thỏa mãn
3 # 2
"
!
#
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
3
5

3

D. −e.

"

!
2
D.
; +∞ .
5
x+2
Câu 91. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vơ số.
C. 1.
D. 3.
Câu 92. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6

a 6
.
B.
.
C.
.
D.
.
A.
48
24
24
8




Câu 93. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 94. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.

B. −4.
C. −2.
D. 4.
2

2

Câu 95. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
2
8
4
Câu 96. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 97. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng


cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 3.
B. 1.
C.
.
D. 2.
3
x+1
Câu 98. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. .
D. 3.
3
4
Câu 99. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.

C. 0, 4.
D. 0, 2.
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
Trang 8/10 Mã đề 1


Câu 101. [12210d] Xét các số thực dương x, y thỏa mãn log3

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9

21
9
3
Câu 102. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
Câu 103. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 104. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.

C. 2020.
D. log2 2020.
Câu 105. Dãy số nào có giới hạn bằng 0?
!n
−2
n3 − 3n
.
B. un =
.
A. un =
n+1
3

C. un = n − 4n.
2

!n
6
D. un =
.
5

Câu 106.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z

B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3

3
4a 3
8a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 108. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
D. −∞; − .
2

2
2
2
tan x + m
Câu 109. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).

Câu 110. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.

.
29
29
29
29
Câu 111. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
2

Câu 112. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.

D. 7.
Trang 9/10 Mã đề 1


2n2 − 1
Câu 113. Tính lim 6
3n + n4
2
A. .
B. 0.
C. 2.
D. 1.
3

Câu 114. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 115. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.

D. 9.

Câu 116. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
C. y = log 14 x.
Câu 117. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
n

5n + n2
n2
Câu 118. [2] Phương trình log x 4 log2
A. 1.

B. 3.

C. un =

n2 + n + 1
.
(n + 1)2

D. un =

n2 − 2
.
5n − 3n2

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 2.
D. Vô nghiệm.

Câu 119. Cho f (x) = sin x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

2

Câu 120. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 2.
x − 12x + 35
Câu 121. Tính lim
x→5
25 − 5x
2
A. −∞.
B. .
5

C. 3.

D. −1 + sin x cos x.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

2

2
C. − .

D. +∞.
5

Câu 122. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
Câu 123. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a

√ thể tích của khối chóp 3S√
3
a 5
a 15
a3 15
a3
.
B.
.
C.
.
D.
.
A.
25
25
5

3
Câu 124. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.
D. m = −3.
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

a3 3
a3 2
a
3
A.
.
B.
.
C. a3 3.
D.
.
2
2
4
Câu 126. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .

B. β = a β .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
Trang 10/10 Mã đề 1


Câu 128. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 12.
D. 20.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 129. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A.
.
B. 2017.
C.

.
D.
.
2017
2018
2018

Câu 130. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3 3
a3
a 3
.
B.
.
C. a3 3.
D.
.
A.
12
3
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.
5.

C

4.

C

8.

9. A

10.

11. A

12.

13.

D


6.

B

7.

B

B

B
C
D

14. A

15.

D

16.

17.

D

18.

D


20.

D

19. A
C

22.
24.

23. A

B

26.

D

28. A
30.

B

25.

C

27.

C


29. A
31.

B

32.

C

D

33.

B

34.

D

35.

B

36.

D

37.


B

38.

D

39. A

40. A

41. A

42.

C

43.

44.

C

45. A

46.
48.

D

47.


B

D
D

C

51.

52.

C

53. A
55.

B

56. A

57.

58.
60.

D
B

59.


C

61.

B

62.

C

49.

50.
54.

B

C

C
B

63.

C

64.

B


65.

B

66.

B

67.

B

68. A

69. A
1


70.

71.

C

72.

D

73. A


74.

D

75. A

C

76.

77. A

78. A

79.

80. A

81.

82. A

83. A

84.

B

B

D

85. A

C

87.

C

88. A

89.

C

90. A

91. A

86.

B

92.

C

93.


94.

C

95.

D

96.

C

97.

D

98.

C

99. A

100.

C

101.

102.


C

103.

104. A

105.

106.
108.

D

B

D
C
B

107.

C

109. A

B

110.

D


111.

112.

D

113.

C
B

114. A

115.

116. A

117. A

118. A

119.

B

120. A

121.


B

122. A

123.

B

124. A

125. A

126.
128.
130.

127.

B
D

129.

B

2

C

B

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×