Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (1)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.94 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng
cách từ A đến mặt phẳng (S BD) bằng

a
a 2
a
2a
.
B. .
C.
.
D. .
A.
3
3
3
4
4x + 1
Câu 2. [1] Tính lim


bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. 4.
D. −1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 3. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 4. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
Z 1
Câu 5. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4


0

B. 1.

C.

1
.
2

D. 0.

Câu 6. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 √
+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.
Câu 7. Tính lim
x→5

2
A. − .
5
Câu 8. Tính lim
x→3

A. −3.


x2 − 12x + 35
25 − 5x

x2 − 9
x−3

2
.
5

B. +∞.

C. −∞.

D.

B. 6.

C. 3.

D. +∞.

Câu 9. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.

x2 + 3x + 5
Câu 10. Tính giới hạn lim
x→−∞

4x − 1
1
1
A. 0.
B. .
C. 1.
D. − .
4
4
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 11. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vơ số.
q
2
Câu 12. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 13. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. Bốn mặt.
B. Hai mặt.
C. Một mặt.

D. Ba mặt.
Trang 1/10 Mã đề 1


Câu 14. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.

D. 7, 2.

Câu 15. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 16. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
.
B.
.
C.

A. −
100
25
Câu 17. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C.

a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
13
.
100

D. −

5
.
16

D. 2.



x = 1 + 3t




Câu 18. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
−1
+
2t
x

=
1
+
7t
x = −1 + 2t
















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .

















z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
−1.

Câu 19. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
.
B.

.
C. .
D.
.
A.
9
9
9
9
[ = 60◦ , S O
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
2

Câu 21. Cho z là nghiệm của phương trình√ x + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 22. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 11 cạnh.
Câu 23. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

Câu 24. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.


C. (I) và (III).

D. (I) và (II).

C. 12.

D. 6.

Câu 25. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
Trang 2/10 Mã đề 1


log 2x

x2
1 − 2 log 2x
1 − 4 ln 2x
C. y0 =
.
D. y0 =
.
3
x
2x3 ln 10




x=t




Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2

C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
2
Câu 28. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
Câu 26. [3-1229d] Đạo hàm của hàm số y =
1 − 2 ln 2x
1
A. y0 = 3
.
B. y0 = 3
.
x ln 10
2x ln 10

Câu 29. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 30. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z

C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
2n2 − 1
Câu 31. Tính lim 6
3n + n4
A. 1.
B. 2.
Câu 32. Tính lim
A. −∞.

cos n + sin n
n2 + 1
B. 1.

2
.
3

C. 0.

D.

C. +∞.

D. 0.


Câu 33. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3
6
2
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.

B.
.
C.
.
D.
.
24
48
24
8
Câu 35. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
Trang 3/10 Mã đề 1



a 38
A.
.
29



3a 58
B.
.
29


3a
3a 38
C.
.
D.
.
29
29

Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
mx − 4
Câu 38. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.
D. 26.
Câu 39. Khối đa diện đều loại {3; 3} có số đỉnh

A. 3.
B. 4.

C. 5.

Câu 40. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 2.

D. 2.
D. 1.

Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
Câu 42. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

1

Câu 43. [2] Tập xác định của hàm số y = (x − 1) 5 là

A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).

Câu 44. Thể tích của khối lập phương có cạnh bằng a 2


A. V = a3 2.
B. 2a3 2.
C. V = 2a3 .

D. D = R.

2a3 2
.
D.
3

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =

.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 46. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.

Câu 45. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 47. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 48. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
d = 30◦ , biết S BC là tam giác đều
Câu 49. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.

.
D.
.
A.
26
9
13
16
Trang 4/10 Mã đề 1


Câu 50. Giá trị của giới hạn lim
A. 1.

B. 2.

2−n
bằng
n+1

Câu 51. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

C. 0.

D. −1.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.


Câu 52. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 1.
D. T = e + 3.
e
e
x−1 y z+1
= =

Câu 53. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 54. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
!x
1

1−x
Câu 55. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. log2 3.
C. − log2 3.

D. 4 mặt.

D. 1 − log2 3.

Câu 56. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
d = 60◦ . Đường chéo
Câu 57. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






2a3 6
a3 6
4a3 6
3
.
B.
.
C. a 6.
.
D.
A.
3
3
3
Câu 58. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

Câu 59. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 2.

D. Khối 12 mặt đều.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 60. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
x+3
Câu 61. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?

A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 62. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.

D. x = −5.
Trang 5/10 Mã đề 1


Câu 63. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.

B. 1.

C. 0.

un
bằng
vn
D. −∞.

Câu 64. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. 2a 6.
B.
.
C. a 6.
D. a 3.
2

Câu 65. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 25.
D. 5.
A. 5.
B. .
5
Câu 66.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).


f (u)dx = F(u) +C. B.

k f (x)dx = k

Z
D.

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 67.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 68. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=

=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.

2
3
4
2
3
−1
Câu 69. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
Câu 70. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 71. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 72. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
A. m > − .
4

4
Câu 73. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
Câu 74. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 8.

D. 12.

Câu 75. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

4a3
4a3 3
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.

3
3
3
3
Trang 6/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vơ nghiệm.
D. 1 nghiệm.

Câu 76. [3-1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0 ∨ m > 4.

Câu 77. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 2 nghiệm.

Câu 78. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.


D. −2.

Câu 79. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 80. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) + g(x)] = a + b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 81. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .


C. (−1)−1 .

D.


−1.

−3

Câu 82. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 1.

D. 2.

Câu 83. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.

D. Hình tam giác.


Câu 84. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.

D. 12.

C. 10.

Câu 85. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
Câu 86. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

a3 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
3

3
9
Câu 87. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.
Trang 7/10 Mã đề 1


Câu 88. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −7.
D. −2.
A. −4.
B.
27
Câu 89. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.

D. {3; 4}.
7n2 − 2n3 + 1
Câu 90. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. - .
D. 0.
3
3
Câu 91. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
x−3
bằng?
Câu 92. [1] Tính lim
x→3 x + 3
A. 1.
B. +∞.

C. 0.

D. −∞.

Câu 93. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
log(mx)
= 2 có nghiệm thực duy nhất
Câu 94. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
3

2

2

Câu 95. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 8.
D. 6.
1 3
Câu 96. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 97. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc

với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
9x
Câu 98. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. .
C. −1.

D. 2.
2
log 2x
Câu 99. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
π
Câu 100. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.


A. T = 3 3 + 1.
B. T = 2 3.
C. T = 2.
D. T = 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3

a 2
a 2
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
6
Trang 8/10 Mã đề 1



Câu 102. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.

C. 20.

D. 12.


Câu 103. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3
a3 3
3
D.
A.
.
B.
.
C. a 3.
.
4
3
12
Câu 104. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.


C. 24.

D. 2.

Câu 105. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

1
3|x−1|

C. 2.

= 3m − 2 có nghiệm duy

D. 1.

x2
Câu 106. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
e

e
Câu 107. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B. 8 3.
.
D. 6 3.
C.
A.
3
3
Câu 108. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
.
B.
.
C.
.
D.

.
A.
4913
4913
68
4913
Câu 109. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+2
c+1

D.

3b + 2ac
.
c+3

Câu 110. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
24
12
Câu 111. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = 1.
2

Z
Câu 112. Cho
A. 0.

1

C. f 0 (0) =

1
.
ln 10


D. f 0 (0) = ln 10.

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 3.
D. 1.

Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.

D. Ba mặt.

Câu 114. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
Câu 115. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Trang 9/10 Mã đề 1



Câu 116. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 117. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3
triệu.

D.
m
=
triệu.
C. m =
(1, 12)3 − 1
(1, 01)3 − 1
Câu 118. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 5}.

D. {4; 3}.

Câu 119. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).
D. (−∞; −1).
√3
Câu 120. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
D. − .
A. −3.
B. 3.
C. .
3
3
Câu 121. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường

thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
3
2
2
3
2
Câu 122. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).
√3
4
Câu 123. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
A. a 3 .
B. a 8 .
C. a 3 .

D. a 3 .
Câu 124. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
Câu 125. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
5
Câu 126. Tính lim
n+3
A. 3.
B. 0.

C. D = R \ {0}.

D. D = R.

C. Khối bát diện đều.

D. Khối lập phương.

C. 2.

D. 1.

Câu 127. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].


D. (4; +∞).

Câu 128. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.

D. 5.

C. 7.

Câu 129. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.

D. 12.

Câu 130. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.
D

3.

4.

7.

B
D

6.

C

5.

C

D

8.

B

9.

B


10.

11.

B

12.

C

13. A

14.

C

15. A

16. A

17.

B

18.

19.

B


20. A

21.
23.

D

25.
27.

22.

C

C

28.

B

30. A

31.

C

32.

33.


C

34. A

B

36.

37.

D

C
D
B

38.
40.

B

41.

C

42. A

43.


C

44.

C
B
B

46.

45. A
47.

B

26. A

C
C

39.

D

24.

29.

35.


D

B

48.

D
B

49.

C

50.

D

51.

C

52.

D

53.

C

54.


D

55.

C

56.

D

57.

C

58.

D
D

59.

D

60.

61.

D


62.

63.

C

64.

65.

C

66. A

67. A

68. A
1

B
C


69. A
71.

70.
B

C


72. A

73.

74.

D

75. A

D

76.

77.

B

78.

79.

B

80.

81. A

C

D
B

82. A
D

83.

D

84.

85. A

86.

B

87.

D

88.

89.

D

90.


C

91.

D

92.

C

94.

C

93.

B

95. A

96.

97. A

98. A

99.

D


D
D

100.

C

101.

B

102.

103.

B

104. A

B

105.

D

106.

D

107.


D

108.

D

110.

D

109. A
111.

D

112.

113.

D

114.

115.

C

117.
119.


D
C

121. A
123.

D

116.

C

118.

C

120.

C

122.

C

124.

C

125.


B

D

126.

127.

C

128. A

129.

C

130. A

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×