Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.3 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. 2.

D. −1.

Câu 2. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 3. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. 4.

B. 2.

Câu 4. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.



3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

C. 6.

D. −1.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 5. [2] Tìm m để giá trị nhỏ nhất √
của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2 √
C. m = ±1.
D. m = ± 3.
A. m = ±3.
B. m = ± 2.
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),

C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 7. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

Câu 8. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.

C. 0.

C. {3; 4}.

D. 3.

D. {5; 3}.


Câu 9. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
3
Câu 10. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
n−1
Câu 11. Tính lim 2
n +2
A. 0.
B. 2.
C. 1.
D. 3.
t
9
Câu 12. [4] Xét hàm số f (t) = t

, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vô số.
D. 0.
Trang 1/11 Mã đề 1



Câu 13. Tính giới hạn lim

x→−∞

1
A. .
4

x2 + 3x + 5
4x − 1

B. 0.

C. 1.

Câu 14. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).


1
D. − .
4
D. (−∞; +∞).

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m > 4.

Câu 15. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m = 4.

Câu 16. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.

C. 3.

D. 5.

Câu 17. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].


D. [6, 5; +∞).

Câu 18. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

D. 12.

C. 8.

Câu 19. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 20. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 21. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.

C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
un
Câu 22. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 23. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D. {3; 3}.

Câu 24. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.
D. 6510 m.
Câu 25. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. (2; 2).

Câu 26. Khối đa diện đều loại {3; 5} có số đỉnh

A. 20.
B. 8.

D. 12.

C. 30.

Câu 27. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .
D. a.
2
2
3
Câu 28. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Trang 2/11 Mã đề 1



Câu 29. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 30. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 31. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
1

Câu 32. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = −3.
D. m = 4.
Câu 33. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Câu 34. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
Câu 35. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

C. 4.

D. 144.

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.

nk
Câu 36. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 2020.
D. log2 13.
2−n
Câu 37. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
C. 2.
D. −1.
x−1 y z+1
Câu 38. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
2n − 3
Câu 39. Tính lim 2
bằng

2n + 3n + 1
A. −∞.
B. +∞.
C. 1.
D. 0.
C. lim qn = 1 với |q| > 1.

D. lim

Câu 40. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C.
; +∞ .
2
2
2

!
1
D. − ; +∞ .
2
Trang 3/11 Mã đề 1


Câu 41. Cho số phức z thỏa mãn |z +

√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
Câu 42. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
Câu 43. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
π
Câu 44. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 4.
C. T = 2 3.
D. T = 2.
A. T = 3 3 + 1.

2

Câu 45. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.

D. 3.

Câu 46. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 47. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
1079
.
B.
.
C.
.
D.
.
A.
4913

4913
4913
68
Câu 48. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
3
a
3
a
3
a
.
C.
.
D.
.
A. a3 .
B.
3
2
6
Câu 49. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng





a 6
a 6
a 6
.
C.
.
D.
.
A. a 6.
B.
6
2
3

Câu 50. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 51. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 24.

D. S = 32.
Câu 52. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
Câu 53. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.
cos n + sin n
Câu 54. Tính lim
n2 + 1
A. −∞.
B. +∞.

C. 20.

D. 30.

C. 10.

D. 12.

C. 1.

D. 0.

Câu 55. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng





a 2
a 2
A. a 3.
B.
.
C. a 2.
D.
.
2
3
Trang 4/11 Mã đề 1


Câu 56. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 57. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
.
B. a3 .
C.
.
D.
.
A.
6
24
12
Câu 59. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 3.
D. V = 5.



x = 1 + 3t




Câu 60. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 7t
x
=
1
+
3t
x
=
−1
+
2t
x
=

−1
+
2t
















.
D. 
A. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . B. 

















z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
Câu 61.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z

Z

D.

k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 62. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 63. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).


f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 64. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 65. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Trang 5/11 Mã đề 1



Câu 66. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).

D. (−∞; −1).

Câu 67. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 68. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 69. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 70. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1

ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
!2x−1
!2−x
3
3
Câu 71. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
Câu 72. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1

A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.


Câu 73. Tìm
√ giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 2 + 3.
B. 3.
C. 3 2.
D. 2 3.
Câu 74. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 75. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).

C. (0; +∞).

D. (−∞; 2).

Câu 76. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3

a 3
a 3
a3
.
B.
.
C. a3 .
D.
.
A.
9
3
3
Câu 77. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R \ {0}.
D. D = R.


Câu 78. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 79. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:


3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
2
4
Câu 80. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Trang 6/11 Mã đề 1


x−3 x−2 x−1
x

+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Câu 81. [4-1213d] Cho hai hàm số y =

Câu 82. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.

Câu 83. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5

A. (1; 2).
B. 2; .
C. [3; 4).
D.
;3 .
2
2
Câu 84.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z

B.
Z

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x
tan x + m
Câu 85. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1

 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
C.

dx = x + C, C là hằng số.

D.

Câu 86. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. .
D. 3.
A. 1.
B. .
2
2
1 − 2n
Câu 87. [1] Tính lim
bằng?
3n + 1
2
1
2
A. 1.
B. .

C. .
D. − .
3
3
3
Câu 88. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Tăng lên n lần.
p
ln x
1
Câu 89. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
log 2x

Câu 90. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
2x ln 10
x
2x ln 10
x ln 10
1 − xy
Câu 91. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3

9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Trang 7/11 Mã đề 1


2mx + 1
1
Câu 92. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Câu 93. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
B.
.
C. 2.
D. 2 13.
A. 26.
13
Câu 94. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
Câu 95. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].

D. D = R.

Câu 96. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = 0.

D. m = −1.

2


Câu 97. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 98. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 99. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. 2.
C. − .
D. .
2
2
Câu 100. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2

Câu 101. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là

1
2
1
B. 3 .
C. √ .
A. 3 .
2e
e
2 e

D.

1
.
e2

Câu 102. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 103. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 104. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
D. 9.
A. 8.
B. 27.
C. 3 3.


Câu 105. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6

3
6
2

Câu 106. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. 5.
D. .
5
Trang 8/11 Mã đề 1


Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
x+1
bằng
x→+∞ 4x + 3
B. 1.

Câu 108. Tính lim
A. 3.

Câu 109. Cho I =


Z

3

x


C.
dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.

1
.
3

D.

1
.
4

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d


C. P = −2.
!
x+1
Câu 110. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
2016
4035
A.
.
B. 2017.
C.
.
2017
2018
Câu 111.
có nghĩa

√ Biểu thức nào sau đây không
−3
−1
−1.
B. (−1) .
C. (− 2)0 .
A.
Câu 112. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.


D. P = 4.
f 0 (2) + · · · + f 0 (2017)
D.

2017
.
2018

D. 0−1 .
D. 2.

Câu 113. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 114. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.


Câu 115. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
Câu 116. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 117. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 118. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
2
Câu 119. Giá trị của lim(2x − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 2.

D. 1.

C. 7.

D. 9.

Câu 120. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 5.

B. 0.

Câu 121. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.
Trang 9/11 Mã đề 1


!
1
1
1
Câu 122. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. .
2
2
Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.

B. Năm cạnh.
C. Ba cạnh.
4x + 1
bằng?
Câu 124. [1] Tính lim
x→−∞ x + 1
A. 2.
B. 4.
C. −4.

D. +∞.
D. Hai cạnh.

D. −1.

Câu 125. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (III).

Câu 126. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. (II) và (III).


D. (I) và (II).

C. 10 cạnh.

D. 9 cạnh.

Câu 127. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 3
a3 6
a3 3
2a 6
.
B.
.
C.
.
D.
.
A.
9
4
12
2

1 + 2 + ··· + n
Câu 128. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 0.
D. lim un = 1.
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 130. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3. A

4.

5.

C

7. A
D


9.

6.

B

8.

B
D

10.

11. A

12. A
D

13.
15.

C

D

14.

B

16.


B
B

17.

C

18.

19.

C

20.

21. A

C

22. A

23.

C

25. A

24.


D

26.

D
D

27.

D

28.

29.

D

30.

31.

D

32.

33. A
35.

C


C
B

34.

D

36.

D

37.

D

38.

39.

D

40.

C
D

41.

B


42.

B

43.

B

44.

B

45.

B

46. A

47.
49.

C

48.
50.

B

51.


D

52.

53.

D

54.

55.
57.
59.
61.

56.

B
D

B
C
D
B

58.
60.

B
D


D
B

62.

63. A
65.

C

D

64. A
D

66. A

67. A

68.
1

C


69.
71.

70.


C
B

73.

C

72. A
74.

C

B

76.

75. A

D

77.

D

78.

B

79.


D

80.

B

81.

82. A

B

83.

D
C

85.
87.
89.

D

B

86.

B


88.

B

91. A
93.

84.

90.

D

92.

D

94.

B

C

B

95.

D

96. A


97.

D

98.

C

100.

C

99. A
101.

D

103.
105.

102.
104.

C
B

108.

D

D

109.

D

110.

111.

D

112.

B

119.

C

116.

C

118.

C

120.


B

121.

C

122. A

123.

C

124.

125.
127.

B

114. A

115. A
117.

C

106. A

107. A


113.

B

D

D
B

126.

C

128. A

C

129. A

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×