Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (513)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.74 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

2n − 3
bằng
Câu 1. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.

C. −∞.

D. 1.

Câu 2. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 3. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.


B. Vơ số.
C. 3.
D. 1.
Câu 4. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



5a3 3
4a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 5. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là


2
11a2
a2 2
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
32
4
16
Câu 6. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.
D. 0, 7%.
log 2x
Câu 7. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1

1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 8. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 9. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.

D. 2.

Câu 10. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log 14 x.

B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log √2 x.
Câu 11. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±1.
D. m = ±3.
n−1
Câu 12. Tính lim 2
n +2
A. 1.
B. 3.
C. 0.
D. 2.
Câu 13. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.

D. 2.
Trang 1/10 Mã đề 1


d = 120◦ .
Câu 14. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.

B. 2a.
C. 4a.
D.
2
Câu 15. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
q
2
Câu 16. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 17. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
B.
.
C. 2.

D. 26.
13
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 18. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
Câu 19. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 20. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. − < m < 0.
D. m ≤ 0.
4
4


Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. 3.
C. −3.
D. .
A. − .
3
3
t
9
Câu 22. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
π
Câu 23. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.

Câu 24. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 25. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D.
x+1
Câu 26. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
D.
6
2
Câu 27.! Dãy số nào sau đây có giới! hạn là 0?
!n
n
n
5
5
1
A.
.
B. − .
C.

.
D.
3
3
3

4 đỉnh, 6 cạnh, 4 mặt.

1
.
3
!n
4
.
e
Trang 2/10 Mã đề 1


1 − 2n
Câu 28. [1] Tính lim
bằng?
3n + 1
2
2
A. .
B. − .
3
3
!4x
!2−x

2
3
Câu 29. Tập các số x thỏa mãn


3 # 2
#
2
2
B. −∞; .
A. −∞; .
5
3

C. 1.

"
!
2
C. − ; +∞ .
3

D.

1
.
3

"


!
2
D.
; +∞ .
5

Câu 30.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.


Câu 31. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 7 năm.
D. 8 năm.
Câu 32. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 33. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.

Câu 34. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 4.

D. Hình tam giác.
D. 108.

Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 36. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
log2 240 log2 15

+ log2 1 bằng
Câu 37. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
2n + 1
Câu 38. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 1.
D. 3.
Câu 39. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Trang 3/10 Mã đề 1


Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

C. Nếu

f (x)dx =

Z

Câu 40. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 2.

Câu 41. Khối đa diện đều loại {4; 3} có số mặt
A. 12.

B. 10.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

C. 8.

D. 6.
!x

1

9
C. − log3 2.

Câu 42. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. 1 − log2 3.

B. log2 3.

D. − log2 3.

Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .

D. −2e2 .
Câu 44. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√M + m
√ của hàm số. Khi đó tổng
B. 7 3.
C. 8 2.
D. 16.
A. 8 3.
Câu 45. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 46. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 47. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + .
C. T = e + 1.
D. T = e + 3.
A. T = 4 + .
e
e

Câu 48. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C. 144.

D. 24.

2

Câu 49. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 3 .
B. √ .
C. 3 .
2e
e
2 e

D.

1
.
e2

Câu 50. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên

√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
Câu 51. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.

Câu 52. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).
Trang 4/10 Mã đề 1


1
Câu 53. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 54. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.

Câu 55. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .

C. − .
D. − 2 .
e
2e
e
x−2 x−1
x
x+1
Câu 56. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. [−3; +∞).
D. (−3; +∞).
Câu 57. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 58. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.

C. −6.
2

D. 6.

Câu 59. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.
D. 6 mặt.
1
Câu 60. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 61. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3

a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 62. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
Câu 63. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.

D. {4; 3}.
Câu 64. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 65. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
4a3 3
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 66. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2

giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Câu 67. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 5/10 Mã đề 1


5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 68. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
.
B. √

.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 69. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

!n
6
C. un =
.
5

!n
−2
D. un =
.
3

[ = 60◦ , S O

Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Câu 71. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 72. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt

2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
.
D. 2.
A. 3.
B. 1.
C.
3
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.
Câu 74. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
20
40
10
C50
C50
C50
C50
.(3)30

.(3)10
.(3)40
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 75. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
B. P = 2i.
C. P =
.
D. P = 2.
A. P =
2
2
Câu 76. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
B. lim qn = 1 với |q| > 1.

n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
0
Câu 77. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 78. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

C. Khối tứ diện đều.

Câu 79. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.

D. Khối 12 mặt đều.
D. Ba mặt.
Trang 6/10 Mã đề 1


x−3 x−2 x−1
x
+

+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 80. [4-1213d] Cho hai hàm số y =

Câu 81. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
!2x−1
!2−x
3
3
Câu 82. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).

cos n + sin n
Câu 83. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.

D. Khối tứ diện đều.

D. [1; +∞).

D. 1.

Câu 84. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 8.
D. 30.
!
5 − 12x
Câu 85. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. Vơ nghiệm.
C. 3.
D. 1.
!
!
!

1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 86. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T =
.
D. T = 1008.
2017
Câu 87. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 88. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.

D. −4.


Câu 89. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (2; +∞).

D. (−∞; 1).

3

2

Câu 90. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (II) đúng.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 91. Cho
x2
1
A. 0.
B. 1.
C. 3.

D. Chỉ có (I) đúng.


D. −3.

Câu 92. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Z 3
x
a
a
Câu 93. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.
D. P = −2.
Trang 7/10 Mã đề 1


Câu 94. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.

A. 2.

B. 3.

C. 0.

D. 1.
un
Câu 95. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 96. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.

A.
4
4
12
8
0 0 0 0
0
Câu 97.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Câu 98. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =

.
B. y = x + .
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
2x + 1
x
Câu 99. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
13
23
.
B. − .
C.
.
D.
.
A. −
100
16
25
100
Câu 100. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 12 cạnh.
Câu 101. [1]! Tập xác định của hàm số! y = log3 (2x + 1) là
!

1
1
1
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
2
2
2

!
1
D. −∞; − .
2

Câu 102. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

Câu 103. Xác định phần ảo của số phức z = ( 2 + 3i)2


A. 7.
B. −7.
C. −6 2.
D. 6 2.
Câu 104. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),

C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 105. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
Câu 106. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
Câu 107. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.

C. 9.


D. 5.
Trang 8/10 Mã đề 1


a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 2.

Câu 108. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.

B. 7.

Câu 109. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 110. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. 2.

C. +∞.


D. 1.

Câu 111. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 112. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −7.
C. −2.
D. −4.
27
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.

.
C.
.
D.
.
9
3
9
9
Câu 114. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.


4n2 + 1 − n + 2
Câu 115. Tính lim
bằng
2n − 3
3
A. .
B. +∞.
2

C. 5.

D. 4.

C. 1.

D. 2.


d = 30◦ , biết S BC là tam giác đều
Câu 116. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
13
9
16
2x + 1
Câu 117. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. −1.

D. .
2
Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 119. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.

Câu 120.√Thể tích của khối lập phương có cạnh bằng a 2

2a3 2
A.
.
B. V = 2a3 .
C. V = a3 2.
3

D. 10 mặt.

D. 2a3 2.

Câu 121. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.

D. Phần thực là −3, phần ảo là 4.
Câu 122.
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả
A. 10.
B. 2.
C. 2.
D. 1.
Trang 9/10 Mã đề 1


Câu 123. Tính lim

2n2 − 1
3n6 + n4
B. 0.

2
.
D. 2.
3
Câu 124. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C. 12.
D.
.
2

Câu 125. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > 0.
D. m > −1.
A. 1.

C.

Câu 126. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

2

1−n
Câu 127. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. .
C. 0.
D. − .
A. .

3
2
2
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



a3 3
a3 3
2a3 3
3
.
B. a 3.
.
D.
.
C.
A.
3
6
3
Câu 129. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .

a
Câu 130. Phát biểu nào sau đây là sai?
1
1
A. lim k = 0.
B. lim = 0.
n
n
C. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

3. A

4. A


5. A

6.

D

8.

D

10.

D

C

7.
9. A

C

11.

C

12.

13. A

14.


D

15. A

16.

D

17.

B
C

19.
21.
23.

20.
D

B

22. A
24.

B

25.


D

D

26.

B
B

27.

C

28.

29.

C

30.

C

32.

31. A
33.
35.

C


18.

D

D
C

34.
36.

B

37. A

38.

D
B

40.

D

42.

D

43. A


44.

D

45. A

46.

39.

C

41.

D

B

47.

D

48.

49.

D

50.


B

51. A

52.

B

53. A

54. A

55.

C

56. A

57. A

58.

59. A

60.

61.

B


67.

B
D

62. A

63. A
65.

C

64.
C

66.
D

68.
1

C
B
D


69.

D


70.

D

71.

D

72.

D

73. A

74. A

75.

D

76.

B

77.

D

78.


B

80.

B

79.
81.

C
B

83. A
D

85.

82.

D

84.

D

86.

D

87.


B

88.

89.

B

90.

91.

B
C

92.

D

93. A

D

94. A

97.

D


98. A

99. A

100.

101.

B

102.

C

103.

D

96.

C

95.

D

104.

D
B


105.

C

106.

107.

C

108.

B

110.

B

109.

B

111. A

112.

113.

C


114.

115.

C

116.

117. A
119.

B

121.
123.

C

D

C
D
B

118.

D

120.


D

122.

D

124. A

B

125.

D

126.

D

127.

D

128.

D

130.

D


129. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×