TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
π π
Câu 2. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
Câu 3. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a
√
√
a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
3
5
25
25
Câu 4. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 5. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
2n2 − 1
Câu 6. Tính lim 6
3n + n4
2
D. 1.
A. 2.
B. 0.
C. .
3
Câu 7. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.
D. Không tồn tại.
p
ln x
1
Câu 8. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
x−1
Câu 9. [1] Tập xác định của hàm số y = 2 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R.
Câu 10. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
40
20
10
C50
.(3)30
C50
.(3)10
C50
.(3)20
C50
.(3)40
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 11. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.
Trang 1/11 Mã đề 1
Câu 12. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 13. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 14. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 6.
D. 4.
Câu 15. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 16. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 17. Hàm số nào sau đây khơng có cực trị
x−2
1
C. y = x + .
D. y =
.
x
2x + 1
x−2 x−1
x
x+1
Câu 18. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
Câu 19. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Câu 21. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 22. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 23. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
Trang 2/11 Mã đề 1
√
a 6
A.
.
3
√
a 6
C.
.
6
√
B. a 6.
√
a 6
D.
.
2
1
Câu 24. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).
D. D = R.
Câu 25. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
D. (−1; −7).
Câu 26. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 27. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.
D. −2.
Câu 28. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
tan x + m
Câu 29. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 30. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 5.
C. .
D. 7.
2
2
Câu 31. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
!x
1
1−x
Câu 32. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.
D. − log2 3.
2
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B.
.
C. √ .
A. 2 .
3
e
2e
2 e
D.
2
.
e3
Câu 34. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 35.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
B. 2.
C. 2.
D. 1.
A. 10.
Z 1
Câu 36. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. 1.
C. .
D. 0.
4
2
Câu 37. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 38. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
Trang 3/11 Mã đề 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√
√ có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.
D. 6.
Câu 39. [3-1214d] Cho hàm số y =
Câu 40.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
4
√
√
a3 2
a3 2
C.
.
D.
.
12
6
√
Câu 41. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
d = 60◦ . Đường chéo
Câu 42. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 43. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 14 x.
B. y = log √2 x.
√
C. y = log π4 x.
D. y = loga x trong đó a = 3 − 2.
Câu 44. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
x−3
bằng?
Câu 45. [1] Tính lim
x→3 x + 3
A. 0.
B. +∞.
C. 1.
D. −∞.
!
3n + 2
2
Câu 46. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Câu 47. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B. 2 13.
C. 2.
D.
.
A. 26.
13
√
Câu 48. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
x+3
nghịch biến trên khoảng
Câu 49. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 2.
D. 3.
!4x
!2−x
2
3
Câu 50. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
2
Câu 51. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.
D. 3.
Câu 52. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 4/11 Mã đề 1
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (II).
D. (I) và (III).
Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
4a3 3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.
6
3
3
3
ln2 x
m
Câu 54. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 135.
D. S = 22.
2n − 3
bằng
Câu 55. Tính lim 2
2n + 3n + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 56. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 57. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 58. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 8π.
D. 16π.
Câu 59. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
.
C. 2a 2.
D.
.
A. a 2.
4
2
Câu 60. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 1.
D. 3.
Câu 61.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 62. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a3 3
5a3 3
a3 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Trang 5/11 Mã đề 1
Câu 63. Tính lim
x→3
A. 6.
x2 − 9
x−3
B. +∞.
C. 3.
D. −3.
2
Câu 64. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 65. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 66. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 67. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 68. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.
D. Tứ diện đều.
Câu 69. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
D. [6, 5; +∞).
Câu 70. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+2
c+3
c+2
c+1
Câu 71. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 3.
C. 1.
D. 0.
t
9
Câu 72. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 2.
D. 1.
2
Câu 73. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 6
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
16
48
48
24
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 40a3 .
D. 10a3 .
3
√
Câu 76. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4
Câu 77. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
1−x2
√
− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
B. f (x) xác định trên K.
D. f (x) liên tục trên K.
Trang 6/11 Mã đề 1
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2].
Câu 78. [4-1213d] Cho hai hàm số y =
2
Câu 79. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 2.
D. m = ±1.
A. m = ±3.
B. m = ± 3.
Câu 80. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
A.
.
B. 2a 6.
C. a 3.
D. a 6.
2
Câu 81. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
Câu 82. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
C. √
.
B. 2
.
D. √
.
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
√
x2 + 3x + 5
Câu 84. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
Câu 85. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 86. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
.
D. a 3.
C.
3
2
8
Câu 87. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Câu 88. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
1 − xy
Câu 89. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
9 11 − 19
18 11 − 29
9 11 + 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
x2 − 3x + 3
Câu 90. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
C. x = 2.
D. x = 1.
Câu 91. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.
Trang 7/11 Mã đề 1
√
Câu 92. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
un
Câu 93. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
1 − n2
Câu 94. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. .
2
3
1
C. − .
2
D. 0.
π
Câu 95. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 2 3.
C. T = 2.
D. T = 4.
A. T = 3 3 + 1.
Câu 96. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 97. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 5.
.
D. 34.
B. 68.
C.
17
Câu 98. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −4.
B. −7.
C. −2.
Câu 99. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
log 2x
là
x2
1 − 2 log 2x
1 − 2 ln 2x
B. y0 =
.
C. y0 = 3
.
3
x
x ln 10
D.
67
.
27
D. 3 nghiệm.
Câu 100. [1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. y0 =
2x3
1
.
ln 10
Câu 101. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
2
Câu 102. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 6.
!2x−1
!2−x
3
3
Câu 103. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).
D. 7.
D. (−∞; 1].
Câu 104.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 3.
B. 1.
C. 2.
D. 5.
Câu 105. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. +∞.
C. −∞.
D. 0.
Trang 8/11 Mã đề 1
Câu 106. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
B. −∞.
C.
2
.
5
D. +∞.
3
Câu 107. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e2 .
D. e3 .
Câu 108. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
√
Câu 109. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 110. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
C. +∞.
D. 2.
Câu 111. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 112.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
4
.
B.
.
A.
e
3
!n
5
C. − .
3
!n
1
D.
.
3
1
Câu 113. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
log7 16
Câu 114. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. −4.
C. 4.
D. 2.
Câu 115. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
e
e
Câu 116.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
mệnh đề nào sai?
Z
Z mệnh đề sau, Z
f (x)g(x)dx =
A.
Z
C.
f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 117. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
Trang 9/11 Mã đề 1
1
1
1
Câu 118. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. 0.
A. .
2
1 − 2n
Câu 119. [1] Tính lim
bằng?
3n + 1
2
1
A. .
B. .
3
3
!
C. 1.
D. 2.
C. 1.
2
D. − .
3
log 2x
Câu 120. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Câu 121. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 122. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2
n2 + n + 1
C. un =
.
(n + 1)2
n2 − 2
D. un =
.
5n − 3n2
Câu 123. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 124. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = 3S h.
D. V = S h.
A. V = S h.
B. V = S h.
3
2
Câu 125. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 126. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
q
2
Câu 127. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
cos n + sin n
Câu 128. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 129.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.
A.
Z
C.
B.
xα+1
x dx =
+ C, C là hằng số.
α+1
α
Câu 130. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
dx = x + C, C là hằng số.
Z
D.
1
dx = ln |x| + C, C là hằng số.
x
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
3.
D
5. A
2.
D
4.
D
6.
B
B
7.
D
8.
9.
D
10.
11. A
C
12. A
13.
C
14.
15.
C
16.
B
18.
B
17.
D
19. A
D
21.
C
23.
29.
20.
D
22.
D
26.
D
B
30.
32.
33. A
34.
35.
D
B
C
40.
C
B
45. A
C
42.
B
44.
B
46. A
47.
D
48.
49.
D
50. A
B
53.
C
54.
B
56. A
57.
B
59.
60.
B
61. A
62.
D
64.
B
52.
55.
66.
D
38. A
B
41.
51.
C
36.
39. A
43.
B
28. A
31. A
37.
C
24.
25. A
27.
C
C
B
D
63. A
65.
C
67.
B
68. A
69. A
1
C
D
71.
70. A
72.
74.
C
D
73.
B
C
75. A
76.
C
77.
D
78.
C
79.
D
80.
D
81.
82.
D
83. A
C
86.
87.
88.
D
89. A
90.
D
91.
92. A
B
D
93.
94.
C
95.
96.
C
97.
98.
C
99.
100.
C
102.
C
D
C
B
101. A
D
103.
104.
C
105. A
106.
C
107.
C
B
109.
B
110. A
D
111.
D
112.
114.
D
85.
84. A
108.
B
B
116. A
C
113.
B
115.
B
117.
118.
C
119.
C
120. A
D
121.
C
122.
B
123.
124.
B
125.
D
127.
D
126.
D
128. A
130.
129.
D
2
B
C