Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (770)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.25 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 7.
log2 240 log2 15

+ log2 1 bằng
Câu 2. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
2
Câu 3. Tính mơ đun của số phức z biết
√4 (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.

D. 5.


D. 1.

D. |z| = 2 5.

Câu 4. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
8a 3
4a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 6. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.

Câu 7. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
!
1
1
1
+ ··· +
Câu 9. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
Câu 10. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.

B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
Câu 11. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.

D. {5; 3}.
Trang 1/11 Mã đề 1


Câu 12. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
a 2
a 5
a 7
11a
.
B.
.
C.

.
D.
.
A.
32
4
16
8
Câu 13. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3
a3 3
a 3
3
.
B.
.
C. a .
D.
.
A.
2
3
6
Câu 14. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó

A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
1 − 2n
bằng?
Câu 15. [1] Tính lim
3n + 1
1
2
2
A. .
B. − .
C. 1.
D. .
3
3
3
[ = 60◦ , S O
Câu 16. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng

2a 57
a 57
a 57
.
B. a 57.
C.

.
D.
.
A.
19
19
17
Câu 17. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 18. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 19. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.

D. Hình lăng trụ.

Câu 20. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.

B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 21. Tính lim

2n2 − 1
3n6 + n4

2
.
C. 2.
D. 0.
3
Câu 22. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
A. 1.

B.

Câu 23. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Trang 2/11 Mã đề 1



d = 60◦ . Đường chéo
Câu 24. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
B.
.
C.
.
D.
.
A. a 6.
3
3
3
!
x+1
Câu 25. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016

A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017
Câu 26. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −4.
C. −7.
D.
.
27

Câu 27. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. [3; 4).
C.
;3 .

D. (1; 2).
2
2
Câu 28. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
3
6
2
1
Câu 29. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.
a
1

Câu 30. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
Câu 31. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Không có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.
Câu 32. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
x2
Câu 33. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 1.
e
e

!
3n + 2
2
Câu 34. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 35. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=

.
B. = =
.
2
3
−1
1 1
1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 36. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.
D. 2.
Trang 3/11 Mã đề 1



mx − 4
Câu 37. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 45.
C. 67.
D. 34.
Câu 38. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

C. 10.

D. 12.

Câu 39. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.
3

2

D. m = −3.

Câu 40. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Câu 41. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
B.
.
A. − .
3
e

!n
1
C.
.
3


Câu 42. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4x + 1
bằng?

Câu 43. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
n−1
Câu 44. Tính lim 2
n +2
A. 1.
B. 3.

1−x2



!n
5
D.
.
3

− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+


1−x2

C. 4.

D. 2.

C. 2.

D. 0.

Câu 45. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.

D. 5 mặt.

Câu 46. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3

a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
36
12
24
6
Câu 47. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 49. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



3
3

a3 3
a
2
a
3
A.
.
B. 2a2 2.
C.
.
D.
.
12
24
24
x+1
Câu 50. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.

D. .
6
3
2
1
Câu 51. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 4.
D. 1.
Trang 4/11 Mã đề 1



Câu 52. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vơ số.
Câu 53. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 + 2 sin 2x.

Câu 54. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
5
7
B. 6.
C. 9.
D. .
A. .
2
2
1
Câu 55. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3
a3 3
.
B.
.
C.
.
D. a3 3.

A.
3
6
3
Câu 57. Phát biểu nào sau đây là sai?
1
B. lim qn = 0 (|q| > 1).
A. lim = 0.
n
1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
!
1
1
1
+
+ ··· +
Câu 58. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 0.
D. 2.
2
Câu 59.
! nào sau đây sai?

Z Mệnh đề
0

A.

f (x)dx = f (x).

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Câu 60. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.



f (x)dx = F(x) + C.


2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là − √3.
D. Phần thực là 2 − 1, phần ảo là − 3.

Câu 61. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.

D. {2}.
Câu 62. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
√3
4
Câu 63. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 64. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 5/11 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).

Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.
! x3 −3mx2 +m
1
Câu 65. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m = 0.
D. m ∈ R.
Câu 66. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 1.
A. 2.
B. .
2
log7 16
Câu 67. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.

B. −2.
C. −4.

D.

ln 2
.
2

D. 2.

Câu 68. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.


Câu 69. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 70. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 71. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 72. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. −2 + 2 ln 2.
D. 4 − 2 ln 2.
1
Câu 73. [3-12217d] Cho hàm số y = ln

. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
3

Câu 74. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e5 .

D. e2 .

Câu 75. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

D. 8.

C. 20.

d = 30◦ , biết S BC là tam giác đều
Câu 76. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
26
16
Câu 77. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Trang 6/11 Mã đề 1


Câu 78. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
−2x2

Câu 79. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B. √ .
e
2 e

C. 2.

D. 3.


trên đoạn [1; 2] là
2
C. 3 .
e

D.

1
.
2e3

Câu 80. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 81. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. − .
C. −2.
2
Câu 82.
! định nào sau đây là sai?
Z Các khẳng
Z
0

f (x)dx = f (x).


A.
Z
C.

f (x)dx = F(x) +C ⇒

B.
Z

f (u)dx = F(u) +C. D.

Câu 83. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

Z

C. 20.

D.

1
.
2
Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k

f (x)dx, k là hằng số.
D. 8.

Câu 84. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Z 3
x
a
a
Câu 85. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.
Câu 86. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 15

a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 87. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 88. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3

−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
2mx + 1
1
Câu 89. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
3a
, hình chiếu vng
Câu 90. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.

.
B. .
C.
.
D. .
3
4
3
3
3
2
Câu 91. Giá
√ x − 3x − 3x + 2


√ trị cực đại của hàm số y =
A. 3 + 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
D. 3 − 4 2.
Trang 7/11 Mã đề 1


Câu 92. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.

D. −1.


Câu 93. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).

Câu 94. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) − g(x)] = a − b.
x→+∞

C. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

f (x) a
= .
g(x) b
D. lim [ f (x) + g(x)] = a + b.

B. lim

x→+∞

x→+∞

x−1

có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.
D. 6.
Câu 95. [3-1214d] Cho hàm số y =

Câu 96. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Câu 97. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
A.
.
B. − .
C. −
.
D.
.

25
16
100
100
Câu 98. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 99.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 100. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 101. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.

D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 102. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10
20
20
40
C50
.(3)10
C50
.(3)40
C50
.(3)30
C50
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
q
2
Câu 104. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Trang 8/11 Mã đề 1




Câu 105. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. 3.
B. − .
C. −3.
3
Câu 106. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. +∞.

C. 2.

D.

1
.
3

D. 1.


Câu 107. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 108. Dãy!số nào có giới hạn bằng 0?
!n
n
n3 − 3n
−2
6
2
A. un =
.
B. un = n − 4n.
C. un =
.
D. un =

.
3
n+1
5
Câu 109. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.
D. x = −2.
x−3 x−2 x−1
x
Câu 110. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 111. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).

1

= 0 với k > 1.
nk
1
D. lim √ = 0.
n
B. lim

Câu 112. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.

D. Vô nghiệm.

Câu 113. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 114. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 115. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?

!
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 116. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 117. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
Trang 9/11 Mã đề 1


C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 118. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
Câu 119. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
Câu 120. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
a 3
2a 3
A.
.
B.
.
C.
.
D. a 3.
2
3
2
x−1
Câu 121. [1] Tập xác định của hàm số y = 2 là
A. D = (0; +∞).
B. D = R \ {1}.
C. D = R \ {0}.
D. D = R.
Câu 122. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 10.

D. 4.

Câu 123. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.

B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 124. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B. 26.
C. 2 13.
D.
.
A. 2.
13
Câu 125. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 126. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 2.

D. 1.

[ = 60◦ , S O
Câu 127. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 128. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
1 − xy
Câu 129. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.




2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
Câu 130. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 8.
D. 6.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C


1.
3.

2. A
4.

B

5. A

6. A
C

7.

8.
D

9.
11.

C

13. A

D

12.

D


14. A
B

16.

17.

B

18.

19. A

C
D

20. A
D

21.

22. A

C

23.

24. A


25. A

26. A

27.

C

28.

B

30.

B

31.

C
B

37.

D

32.

33. A
35.


B

10.

15.

29.

B

D

C

34.

B

36.

B

38. A
40.

39. A
41.

C


42.

43.

C

44.

45.

C

46.

47.

C

48.

49.

C

50. A

51.

D


53.

52.

D
B
D
B
D
B

54. A

C

55. A

56. A

57.

B

58.

59.

B

60.


61.

B

62.

63.

B

64.

65.

C

66. A

67.

C

68. A
1

B
D
B
D



69. A
72.

70.
B

74.

C

73.

B

75.

B

76. A

77.

78. A

79. A

80.


B

82.

C
D

84.

C

83.

C

87.

88.

C

89.

90.

C

91.

92.


C

93.

98.

B
C

B

97.

C

D

B
D

103.
105.

106. A

107. A

108. A


109.

C
D
C

111. A

B

113.

112. A
114.

D

115.

116.

D

117. A

118.

D

119.


120.

B

121.

122.

B

123.

124.

D

126.
128.

C
C

104. A

110.

D

101.


C

102.

B

95.
99.

B

100.

D

85.

C

96.

C

81.

86.

94.


C

125.
127.

C
B

129. A

130. A

2

D
C
C
D
C
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×