Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 3 (304)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.86 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 4.
D. ln 10.
Câu 2. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 3. [1-c] Giá trị của biểu thức
A. −4.

B. 2.

log7 16
log7 15 − log7

15
30


bằng
C. −2.

Câu 4. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.

D. 4.
D. Không tồn tại.

Câu 5. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
cos n + sin n
Câu 6. Tính lim
n2 + 1
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 7. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5

5
A. − < m < 0.
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
4
4
!2x−1
!2−x
3
3
Câu 8. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).
Câu 9. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.

D. Bốn mặt.
q
Câu 10. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 11. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
log 2x
Câu 12. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x

1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
2x ln 10
x
2x ln 10
Trang 1/10 Mã đề 1


Câu 13. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
!
1
1
1
+ ··· +
Câu 14. [3-1131d] Tính lim +
1 1+2

1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.
D. .
2
2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 15. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.

Câu 16. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B.

;3 .
C. 2; .
D. (1; 2).
2
2
Câu 17. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 21.
D. 24.
Câu 18.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
e
3

!n
5
C.
.
3


!n
5
D. − .
3




x = 1 + 3t




Câu 19. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t

















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
Câu 20. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 21. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. .
C. 2.
D. 1.
A.
2
2
Câu 22. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.

Câu 23. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
!
!
!

x
4
1
2
2016
Câu 24. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
4a 3

8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Trang 2/10 Mã đề 1


Câu 26. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 27. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.


D. 3.

Câu 28. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Câu 29. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 30. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x4 − 2x + 1.
D. y = x + .
A. y = x3 − 3x.
B. y =
2x + 1

x
1
Câu 31. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 32. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 33.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.

D.
f (x)dx = f (x).

Câu 34. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.

B. 0.

C. 1.
0

0

Z

f (t)dt = F(t) + C.

un
bằng
vn
D. −∞.

0

Câu 35. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là

BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24




Câu 36. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3

A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
4
4
4
Câu 37. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
2

2

Câu 38. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

D. y0 = ln x − 1.

Câu 39. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 20.


D. 8.
Trang 3/10 Mã đề 1


Câu 40. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai. B. Chỉ có (II) đúng.
C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
Z 3
a
x
a
Câu 41. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.

C. P = 4.
D. P = 16.
2
2n − 1
Câu 42. Tính lim 6
3n + n4
2
A. 2.
B. 0.
C. .
D. 1.
3
Câu 43. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 44. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.

C. −5.
D. 5.
mx − 4
Câu 45. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 45.
C. 67.
D. 26.
2

Câu 46. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 47. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.
Câu 48.
A. 4.

B. 2.
log2 240 log2 15

[1-c] Giá trị biểu thức
log3,75 2 log60 2

B. −8.
1 − 2n
[1] Tính lim
bằng?
3n + 1
B. 1.

C. 0.

D. +∞.

+ log2 1 bằng
C. 3.

D. 1.

Câu 49.
1
2
2
A. .
C. .
D. − .
3
3
3
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là

√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 51. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối 12 mặt đều.

3
4
Câu 52. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
7

A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Trang 4/10 Mã đề 1


2

Câu 53. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 2.

D. 5.

Câu 54. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 55. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 56. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].

D. D = R.

Câu 57. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6
18
6
36
2

2

2


Câu 58. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
2

Câu 59. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B. √ .
C. 2 .
e
e
2 e
Câu 60. [3-1229d] Đạo hàm của hàm số y =
1
1 − 2 ln 2x
.
B. y0 = 3
.
A. y0 = 3
x ln 10
2x ln 10


log 2x

x2
1 − 4 ln 2x
C. y0 =
.
2x3 ln 10

D.

1
.
2e3

D. y0 =

1 − 2 log 2x
.
x3

Câu 61. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
8

4
2
Câu 62. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim qn = 0 (|q| > 1).
n
1
C. lim un = c (un = c là hằng số).
D. lim k = 0.
n
Câu 63. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n2 lần.
D. n lần.
Câu 64. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.


Câu 65. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 5/10 Mã đề 1


Câu 66. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.

Câu 67. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
.
D. V = 2a3 .
B. V = a3 2.
C.
A. 2a3 2.
3
Câu 68. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.


D. Khối bát diện đều.

Câu 69. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Câu 70. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
5a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
3
3
3
2
Câu 71. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 72. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 73. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a


x→a

D. f (x) có giới hạn hữu hạn khi x → a.

x→a

Câu 74. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3

3
4
Câu 75. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

2

Câu 76. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 5.

D. 6.

Câu 77.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
B. 1.
C. 5.
D. 2.
A. 3.
Câu 78. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Trang 6/10 Mã đề 1


x+2
Câu 79. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.

B. 3.
C. Vô số.
D. 1.
Câu 80. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
Câu 81. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.

D. 2.

Câu 82. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 83. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
Câu 84. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. 9.
B. 0.
C. 13.
Câu 85. [4-1244d] Trong tất cả các số phức z = a + bi,
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
.
B.
.
C.
A. −
100
100
2x + 1
Câu 86. Tính giới hạn lim
x→+∞ x + 1
1
B. 1.
C.
A. .
2
x2 − 12x + 35
Câu 87. Tính lim
x→5
25 − 5x
A. −∞.
B. +∞.
C.


D. Không tồn tại.

a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết


5
.
16

D.

9
.
25

2.

D. −1.

2
.
5

2
D. − .
5

Câu 88. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 89. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
 π
x
Câu 90. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2

1 π3
2 π4
A. 1.
B. e .
C.
e .
D.
2
2
4x + 1
Câu 91. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D.
n−1

Câu 92. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D.


3 π6
e .
2

−1.

0.
Trang 7/10 Mã đề 1


Câu 93. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5

3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
2

2
Câu 94. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.

D. m > −1.

Câu 95. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.
D. .
2
2
Câu 96. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3
A.
.

B.
.
C. a .
D.
.
6
3
2
Câu 97. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.

C. 4.

D. 10.

Câu 98. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
!4x
!2−x
2
3
Câu 99. Tập các số x thỏa mãn


3 # 2

!
"
!
#
"
2
2
2
2
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
A.
5
5
3
3
Câu 100. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 101. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 102. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. .
C. 25.
5



D.

5.

Câu 103. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.

B. lim

Câu 104. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .

Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.
Trang 8/10 Mã đề 1


Câu 106. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

x−2
Câu 107. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
3

1
3|x−1|

= 3m − 2 có nghiệm duy

C. 3.


D. 4.

C. 2.

D. −3.

1

Câu 108. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.

D. D = R \ {1}.

Câu 109. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 110. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

3
a 3
a 3

a3
3
A.
.
B. a .
C.
.
D.
.
9
3
3
Câu 111. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 112. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
Câu 113. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.

B. Khối lập phương.
C. Khối tứ diện.
D. Khối bát diện đều.
x+1
bằng
Câu 114. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
2
3
Câu 115. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

D.

1
.
6

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z

D.
f (x)dx = f (x).

Câu 116. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Câu 117. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 2.

D. 3.
Trang 9/10 Mã đề 1


Câu 118. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.

C. 10.

Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − .
A. − 2 .
e
e
2e

D. 8.

D. −e.

Câu 120. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .

D. 120 cm2 .
Câu 121. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 122. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20

20
10
C50
.(3)10
C50
.(3)30
C50
.(3)20
C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450
450
450
π
Câu 123. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 4.

C. T = 2 3.
D. T = 2.
A. T = 3 3 + 1.
Câu 124. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 72.

Câu 125.
[1233d-2] Mệnh đề nào sau đây sai?
Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 126. Tính lim
A. 3.

5
n+3

B. 2.

C. 0.

Câu 127. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.

D. 1.
D. 12.

[ = 60◦ , S O
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng



a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
Trang 10/10 Mã đề 1


Câu 129. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
C. 5.
A. 68.
B.
D. 34.
17
Câu 130. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)

lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
8
7
5
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3. A
5.


C

2.
C

4.

D

6.

D

7.

D

8.

C

9.

D

10.

C

11. A


12. A

13.

B

14. A

15.

B

16.

B

18.

B

17. A
D

19.
21.

20.

C


22. A

23.

D

24.

25.

D

26.

27.

B

30.

B

37.

D

B

36.


B

38.

C
C

C

40.

41.

C

42.

43.

B

34.

39.

D

B


44.

C

46.

45. A
47.

C

49.

D

51.

B

50.

B

52. A

C

54.

55. A


56.
B

59.

D

48.

53. A
57.

B

32. A

C

33. A
35.

D

28. A

29. A
31.

C


B
D

58.
C

C

60. A

61.

B

62.

63.

B

64.

65.

B

66. A
68.


67. A
1

B
D
D


69. A

70.

D

71. A

72.

D

73. A

74.

75. A

76. A

77.


B

78.

D

79. A

80.

81.

C

82.

83.

C

84.

85. A

D
B
D
B
C


86.

87.

88.

C

89. A

D

90.

C

92.

D

94.

D

95. A

96.

D


97. A

98.

91.

B
C

93.

99.

D

100.

101.

D

102.

103.

D

104.

106.


B

107.

108.

B

109. A

110.

D

111.

112. A
D

115.

116. A

C
D
B
B
C
B


117. A

118.

B

119.

120.

B

121.

122.

D

123.

B

126.

C
D
B

125.

C

128.
130.

D

113.

114.

124.

C

D
B

2

C

127.

B

129.

B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×