TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B. 2; .
C. [3; 4).
D.
;3 .
2
2
√
ab. Giá
3
2
Câu 2. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 3. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 4. Tính lim
A. 0.
2n2 − 1
3n6 + n4
B. 1.
C. 2.
D.
2
.
3
!
1
1
1
+ ··· +
Câu 5. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. 2.
C. +∞.
D. .
2
2
√
√
Câu 6. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√
√
A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
! x3 −3mx2 +m
1
Câu 7. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên khoảng
π
(−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m ∈ (0; +∞).
D. m = 0.
Câu 8. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
√
Câu 9. Thể tích của khối lập phương có cạnh bằng a 2
√
3
√
√
2a
2
A. V = a3 2.
B. V = 2a3 .
C. 2a3 2.
D.
.
3
Câu 10. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 7.
D.
π
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
A.
e .
B. 1.
C.
e .
D.
2
2
Câu 12. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 8.
D.
2−n
Câu 13. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
C. −1.
D.
3.
1 π3
e .
2
30.
2.
Trang 1/10 Mã đề 1
Câu 14. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2
n2 + n + 1
.
(n + 1)2
√
Câu 15. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a3 3
a 3
a3
3
D.
A.
.
B.
.
C. a 3.
.
12
4
3
Câu 16. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
C. un =
n2 − 2
.
5n − 3n2
D. un =
Câu 17. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều sai.
Câu 18. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 19. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
1
Câu 20. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
Câu 21. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
√
Câu 22. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 1.
D. −1.
C. 4.
D. 8.
C. 108.
D. 36.
Câu 23. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 24. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
ln 10
Câu 25. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
Trang 2/10 Mã đề 1
Câu 26. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
D. {5; 2}.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 28. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 29. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 30. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.
Câu 31. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
.
B.
A. √ .
n
n
C.
x+2
bằng?
x→2
x
A. 2.
B. 3.
√
√
4n2 + 1 − n + 2
bằng
Câu 33. Tính lim
2n − 3
3
A. +∞.
B. .
2
n+1
.
n
D.
1
.
n
Câu 32. Tính lim
C. 0.
D. 1.
C. 2.
D. 1.
Câu 34. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 35. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.
Câu 36. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
1
Câu 37. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = R.
Câu 38. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 3/10 Mã đề 1
Câu 39. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 40. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
8
12
4
Câu 41. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 42. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = ln x − 1.
Câu 43. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.
C. 8.
D. 12.
Câu 44. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3
a3
a3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 46. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 47. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].
D. [−1; 2).
Câu 48. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 50. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
Câu 51. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.
2n + 1
Câu 52. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 11 cạnh.
D. 12 cạnh.
C. 1.
D. 0.
Trang 4/10 Mã đề 1
Câu 53. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
Câu 54. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
x−3
Câu 55. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 2.
C. 12.
D. 3.
D. 10.
C. 0.
D. 1.
2
ln x
m
Câu 56. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 24.
D. S = 135.
x=t
Câu 57. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 58. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. .
C. 1.
D. .
2
2
3
2
Câu 59. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−1; 0).
Câu 60. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
D. 1 − sin 2x.
Câu 61. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 62. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 63. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
C. 144.
D. 4.
Câu 64. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 65. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .
D. T = 4 + .
e
e
Trang 5/10 Mã đề 1
Câu 66. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 67. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 68. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+3
c+1
3b + 2ac
.
c+2
3a
Câu 69. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a 2
a
A. .
B.
.
C.
.
D. .
4
3
3
3
D.
Câu 70. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 71. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 72. [1] Tập
!
!
! xác định của hàm số y! = log3 (2x + 1) là
1
1
1
1
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
A. −∞; − .
2
2
2
2
√
Câu 73. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
6
18
Câu 74. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.
D. 3.
cos n + sin n
Câu 75. Tính lim
n2 + 1
A. +∞.
B. 1.
C. −∞.
D. 0.
2n + 1
Câu 76. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. 0.
C. .
D. .
2
2
3
Câu 77. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
Câu 78. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.
D. Hình chóp.
Trang 6/10 Mã đề 1
8
Câu 79. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 80. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 81. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01) − 1
3
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
3
Câu 82. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
.
B. .
C. .
D.
.
A.
10
5
5
10
Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
e
e
Câu 85. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. −
1
.
2e
D. {4; 3}.
Câu 86. Biểu thức nào sau đây √
khơng có nghĩa
√
−3
−1
−1.
C. (− 2)0 .
D. (−1)−1 .
A. 0 .
B.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 87. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
24
12
24
√
2
Câu 88. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 89. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
Câu 90. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Câu 91. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
D. 8.
C. 20.
Câu 92. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
Trang 7/10 Mã đề 1
√
Câu 93. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 94. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 2 2.
B. 2 3.
C. 2.
D. 6.
Câu 95. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
Câu 96. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 97. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.
2
D. D = [2; 1].
3
Câu 98. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .
D. e2 .
x+3
Câu 99. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 100. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
2
3
6
Câu 101. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 3.
D. x = 1.
x2 −3x+8
Câu 102. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 8.
B. 6.
C. 5.
x−2
Câu 103. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
3
D. 7.
D. 1.
Câu 104. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 105. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
4
2
Trang 8/10 Mã đề 1
Câu 107. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√
√
√ chóp S .ABMN là 3 √
3
a 3
5a3 3
4a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 108. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
π π
3
Câu 109. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 3.
D. 1.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 110. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 111. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
Câu 112. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.
D. 2.
Câu 113. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 114. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. 5.
D. 4.
Câu 115. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.
D. 6 mặt.
Câu 116. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
D. 3.
C. 4.
−2x2
Câu 117. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 3 .
B. 2 .
2e
e
trên đoạn [1; 2] là
2
C. 3 .
e
Câu 118. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
D.
1
√ .
2 e
D. 27.
Câu 119. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Trang 9/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 120. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 121. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 122. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
x+1
Câu 124. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
3
6
2
x2 − 12x + 35
Câu 125. Tính lim
x→5
25 − 5x
2
2
B. −∞.
C. − .
D. +∞.
A. .
5
5
2x + 1
Câu 126. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 127. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√
√ hai đường thẳng S B và AD bằng
√
√
a 2
a 2
.
B. a 3.
C. a 2.
D.
.
A.
3
2
Câu 128. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 129. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
6
15
!x
1
Câu 130. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log2 3.
B. − log3 2.
C. 1 − log2 3.
D. log2 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4. A
5.
6. A
B
7.
D
8.
C
9.
C
15.
D
17.
12.
B
14.
B
16. A
18.
C
19. A
21.
B
10. A
11. A
13.
B
B
20. A
B
22.
23.
D
25.
24.
C
27. A
29.
D
31.
26.
B
28.
B
C
32. A
D
35.
C
30.
C
33.
B
34.
D
36. A
C
37. A
38.
39. A
40.
B
B
41.
D
42.
43.
D
44.
45.
B
D
46. A
47. A
49.
D
48.
C
50. A
C
51. A
52.
B
53.
C
54.
C
55.
C
56.
B
57.
D
58.
B
59.
D
60.
B
62.
61. A
63.
64.
C
65. A
67.
66. A
D
68. A
1
D
C
69.
B
70.
71.
B
72.
73.
D
74. A
75.
D
76.
B
D
D
77.
B
78.
B
79.
B
80.
D
81. A
82.
D
83. A
84.
D
85.
C
86. A
87.
C
88.
B
89.
C
90.
B
91.
C
92.
93.
D
94.
95.
D
96.
97.
B
99. A
C
B
C
98.
B
100.
B
101.
D
102.
D
103.
D
104.
D
106.
D
105. A
107.
B
109.
108.
D
110.
111. A
D
114.
115.
D
116.
B
118.
119. A
C
D
C
B
120.
121.
D
122.
123.
D
124.
125. A
127.
B
112.
113.
117.
C
C
D
B
126. A
128.
D
130. A
2
D